您好,登錄后才能下訂單哦!
前言
有一位同學正在調研MLSQL Stack對流的支持。然后說了流調試其實挺困難的。經過實踐,希望實現(xiàn)如下三點:
實現(xiàn)這三個點之后,我發(fā)現(xiàn)調試確實就變得簡單很多了。
流程
首先我新建了一個kaf_write.mlsql,里面方便我往Kafka里寫數(shù)據(jù):
set abc=''' { "x": 100, "y": 200, "z": 200 ,"dataType":"A group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} { "x": 120, "y": 100, "z": 260 ,"dataType":"B group"} '''; load jsonStr.`abc` as table1; select to_json(struct(*)) as value from table1 as table2; save append table2 as kafka.`wow` where kafka.bootstrap.servers="127.0.0.1:9092";
這樣我每次運行,數(shù)據(jù)就能寫入到Kafka.
接著,我寫完后,需要看看數(shù)據(jù)是不是真的都寫進去了,寫成了什么樣子:
!kafkaTool sampleData 10 records from "127.0.0.1:9092" wow;
這句話表示,我要采樣Kafka 10條Kafka數(shù)據(jù),該Kafka的地址為127.0.0.1:9092,主題為wow.運行結果如下:
沒有什么問題。接著我寫一個非常簡單的流式程序:
-- the stream name, should be uniq. set streamName="streamExample"; -- use kafkaTool to infer schema from kafka !kafkaTool registerSchema 2 records from "127.0.0.1:9092" wow; load kafka.`wow` options kafka.bootstrap.servers="127.0.0.1:9092" as newkafkatable1; select * from newkafkatable1 as table21; -- print in webConsole instead of terminal console. save append table21 as webConsole.`` options mode="Append" and duration="15" and checkpointLocation="/tmp/s-cpl4";
運行結果如下:
在終端我們也可以看到實時效果了。
補充
當然,MLSQL Stack 還有對流還有兩個特別好地方,第一個是你可以對流的事件設置http協(xié)議的callback,以及對流的處理結果再使用批SQL進行處理,最后入庫。參看如下腳本:
-- the stream name, should be uniq. set streamName="streamExample"; -- mock some data. set data=''' {"key":"yes","value":"no","topic":"test","partition":0,"offset":0,"timestamp":"2008-01-24 18:01:01.001","timestampType":0} {"key":"yes","value":"no","topic":"test","partition":0,"offset":1,"timestamp":"2008-01-24 18:01:01.002","timestampType":0} {"key":"yes","value":"no","topic":"test","partition":0,"offset":2,"timestamp":"2008-01-24 18:01:01.003","timestampType":0} {"key":"yes","value":"no","topic":"test","partition":0,"offset":3,"timestamp":"2008-01-24 18:01:01.003","timestampType":0} {"key":"yes","value":"no","topic":"test","partition":0,"offset":4,"timestamp":"2008-01-24 18:01:01.003","timestampType":0} {"key":"yes","value":"no","topic":"test","partition":0,"offset":5,"timestamp":"2008-01-24 18:01:01.003","timestampType":0} '''; -- load data as table load jsonStr.`data` as datasource; -- convert table as stream source load mockStream.`datasource` options stepSizeRange="0-3" as newkafkatable1; -- aggregation select cast(value as string) as k from newkafkatable1 as table21; !callback post "http://127.0.0.1:9002/api_v1/test" when "started,progress,terminated"; -- output the the result to console. save append table21 as custom.`` options mode="append" and duration="15" and sourceTable="jack" and code=''' select count(*) as c from jack as newjack; save append newjack as parquet.`/tmp/jack`; ''' and checkpointLocation="/tmp/cpl15";
總結
以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作具有一定的參考學習價值,謝謝大家對億速云的支持。
免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據(jù),一經查實,將立刻刪除涉嫌侵權內容。