您好,登錄后才能下訂單哦!
Pandas最初被作為金融數(shù)據(jù)分析工具而開發(fā)出來(lái),因此,pandas為時(shí)間序列分析提供了很好的支持。
Pandas的名稱來(lái)自于面板數(shù)據(jù)(panel data)和python數(shù)據(jù)分析(data analysis)。panel data是經(jīng)濟(jì)學(xué)中關(guān)于多維數(shù)據(jù)集的一個(gè)術(shù)語(yǔ),在Pandas中也提供了panel的數(shù)據(jù)類型。
數(shù)據(jù)結(jié)構(gòu):
Series:一維數(shù)組,與Numpy中的一維array類似。二者與Python基本的數(shù)據(jù)結(jié)構(gòu)List也很相近,其區(qū)別是:List中的元素可以是不同的數(shù)據(jù)類型,而Array和Series中則只允許存儲(chǔ)相同的數(shù)據(jù)類型,這樣可以更有效的使用內(nèi)存,提高運(yùn)算效率。
Time- Series:以時(shí)間為索引的Series。
DataFrame:二維的表格型數(shù)據(jù)結(jié)構(gòu)。很多功能與R中的data.frame類似??梢詫ataFrame理解為Series的容器。以下的內(nèi)容主要以DataFrame為主。
Panel :三維的數(shù)組,可以理解為DataFrame的容器。
Pandas 有兩種自己獨(dú)有的基本數(shù)據(jù)結(jié)構(gòu)。讀者應(yīng)該注意的是,它固然有著兩種數(shù)據(jù)結(jié)構(gòu),因?yàn)樗廊皇?Python 的一個(gè)庫(kù),所以,Python 中有的數(shù)據(jù)類型在這里依然適用,也同樣還可以使用類自己定義數(shù)據(jù)類型。只不過,Pandas 里面又定義了兩種數(shù)據(jù)類型:Series 和 DataFrame,它們讓數(shù)據(jù)操作更簡(jiǎn)單了。
因?yàn)閜andas是python的第三方庫(kù)所以使用前需要安裝一下,直接使用pip install pandas 就會(huì)自動(dòng)安裝pandas以及相關(guān)組件
導(dǎo)入pandas模塊并使用別名,以及導(dǎo)入Series模塊,以下使用基于本次導(dǎo)入。
from pandas import Series import pandas as pd
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。