溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務(wù)條款》

Pywavelets庫怎么在Python中使用

發(fā)布時間:2021-03-24 16:58:28 來源:億速云 閱讀:542 作者:Leah 欄目:開發(fā)技術(shù)

這篇文章將為大家詳細講解有關(guān)Pywavelets庫怎么在Python中使用,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關(guān)知識有一定的了解。

具體如下:

# -*- coding: utf-8 -*- 
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import datetime 
from scipy import interpolate
from pandas import DataFrame,Series

import numpy as np 
import pywt 

data = np.linspace(1, 4, 7) 

# pywt.threshold方法講解: 
#        pywt.threshold(data,value,mode ='soft',substitute = 0 ) 
#        data:數(shù)據(jù)集,value:閾值,mode:比較模式默認soft,substitute:替代值,默認0,float類型 

#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#output:[ 6.  6.  0.  0.5 1.  1.5 2. ] 
#soft 因為data中1小于2,所以使用6替換,因為data中第二個1.5小于2也被替換,2不小于2所以使用當(dāng)前值減去2,,2.5大于2,所以2.5-2=0.5..... 

print(pywt.threshold(data, 2, 'soft',6))  


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#hard data中絕對值小于閾值2的替換為6,大于2的不替換 
print (pywt.threshold(data, 2, 'hard',6)) 


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中數(shù)值小于閾值的替換為6,大于等于的不替換 
print (pywt.threshold(data, 2, 'greater',6) )

print (data )
#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中數(shù)值大于閾值的,替換為6 
print (pywt.threshold(data, 2, 'less',6) )

[6. 6. 0. 0.5 1. 1.5 2. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 6. 6. 6. 6. ]

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

import pywt
import pywt.data


ecg = pywt.data.ecg()

data1 = np.concatenate((np.arange(1, 400),
            np.arange(398, 600),
            np.arange(601, 1024)))
x = np.linspace(0.082, 2.128, num=1024)[::-1]
data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x)))

mode = pywt.Modes.smooth


def plot_signal_decomp(data, w, title):
  """Decompose and plot a signal S.
  S = An + Dn + Dn-1 + ... + D1
  """
  w = pywt.Wavelet(w)#選取小波函數(shù)
  a = data
  ca = []#近似分量
  cd = []#細節(jié)分量
  for i in range(5):
    (a, d) = pywt.dwt(a, w, mode)#進行5階離散小波變換
    ca.append(a)
    cd.append(d)

  rec_a = []
  rec_d = []

  for i, coeff in enumerate(ca):
    coeff_list = [coeff, None] + [None] * i
    rec_a.append(pywt.waverec(coeff_list, w))#重構(gòu)

  for i, coeff in enumerate(cd):
    coeff_list = [None, coeff] + [None] * i
    if i ==3:
      print(len(coeff))
      print(len(coeff_list))
    rec_d.append(pywt.waverec(coeff_list, w))

  fig = plt.figure()
  ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
  ax_main.set_title(title)
  ax_main.plot(data)
  ax_main.set_xlim(0, len(data) - 1)

  for i, y in enumerate(rec_a):
    ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
    ax.plot(y, 'r')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("A%d" % (i + 1))

  for i, y in enumerate(rec_d):
    ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
    ax.plot(y, 'g')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("D%d" % (i + 1))


#plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity")
#plot_signal_decomp(data2, 'sym5',
#          "DWT: Frequency and phase change - Symmlets5")
plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5")


plt.show()

72
5

Pywavelets庫怎么在Python中使用

將數(shù)據(jù)序列進行小波分解,每一層分解的結(jié)果是上次分解得到的低頻信號再分解成低頻和高頻兩個部分。如此進過N層分解后源信號X被分解為:X = D1 + D2 + … + DN + AN 其中D1,D2,…,DN分別為第一層、第二層到等N層分解得到的高頻信號,AN為第N層分解得到的低頻信號。

關(guān)于Pywavelets庫怎么在Python中使用就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學(xué)到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI