溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

python中怎么尋找離散序列極值點(diǎn)

發(fā)布時(shí)間:2021-06-17 16:24:39 來源:億速云 閱讀:310 作者:Leah 欄目:開發(fā)技術(shù)

python中怎么尋找離散序列極值點(diǎn),很多新手對(duì)此不是很清楚,為了幫助大家解決這個(gè)難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。

使用 scipy.signal 的 argrelextrema 函數(shù)(API),簡單方便

import numpy as np 
import pylab as pl
import matplotlib.pyplot as plt
import scipy.signal as signal
x=np.array([
  0, 6, 25, 20, 15, 8, 15, 6, 0, 6, 0, -5, -15, -3, 4, 10, 8, 13, 8, 10, 3,
  1, 20, 7, 3, 0 ])
plt.figure(figsize=(16,4))
plt.plot(np.arange(len(x)),x)
print x[signal.argrelextrema(x, np.greater)]
print signal.argrelextrema(x, np.greater)

plt.plot(signal.argrelextrema(x,np.greater)[0],x[signal.argrelextrema(x, np.greater)],'o')
plt.plot(signal.argrelextrema(-x,np.greater)[0],x[signal.argrelextrema(-x, np.greater)],'+')
# plt.plot(peakutils.index(-x),x[peakutils.index(-x)],'*')
plt.show()
[25 15 6 10 13 10 20]
(array([ 2, 6, 9, 15, 17, 19, 22]),)

但是存在一個(gè)問題,在極值有左右相同點(diǎn)的時(shí)候無法識(shí)別,但是個(gè)人認(rèn)為在實(shí)際的使用過程中極少會(huì)出現(xiàn)這種情況,所以可以忽略。

x=np.array([
  0, 15, 15, 15, 15, 8, 15, 6, 0, 6, 0, -5, -15, -3, 4, 10, 8, 13, 8, 10, 3,
  1, 20, 7, 3, 0 ])
plt.figure(figsize=(16,4))
plt.plot(np.arange(len(x)),x)
print x[signal.argrelextrema(x, np.greater)]
print signal.argrelextrema(x, np.greater)

plt.plot(signal.argrelextrema(x,np.greater)[0],x[signal.argrelextrema(x, np.greater)],'o')
plt.plot(signal.argrelextrema(x,np.less)[0],x[signal.argrelextrema(x, np.less)],'+')
plt.show()
[15 6 10 13 10 20]
(array([ 6, 9, 15, 17, 19, 22]),)

看完上述內(nèi)容是否對(duì)您有幫助呢?如果還想對(duì)相關(guān)知識(shí)有進(jìn)一步的了解或閱讀更多相關(guān)文章,請(qǐng)關(guān)注億速云行業(yè)資訊頻道,感謝您對(duì)億速云的支持。

向AI問一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI