溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

使用python實(shí)現(xiàn)各種插值法的示例

發(fā)布時(shí)間:2021-04-06 12:55:37 來(lái)源:億速云 閱讀:527 作者:小新 欄目:開(kāi)發(fā)技術(shù)

這篇文章將為大家詳細(xì)講解有關(guān)使用python實(shí)現(xiàn)各種插值法的示例,小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,希望大家閱讀完這篇文章后可以有所收獲。

一維插值

插值不同于擬合。插值函數(shù)經(jīng)過(guò)樣本點(diǎn),擬合函數(shù)一般基于最小二乘法盡量靠近所有樣本點(diǎn)穿過(guò)。常見(jiàn)插值方法有拉格朗日插值法、分段插值法、樣條插值法。

  • 拉格朗日插值多項(xiàng)式:當(dāng)節(jié)點(diǎn)數(shù)n較大時(shí),拉格朗日插值多項(xiàng)式的次數(shù)較高,可能出現(xiàn)不一致的收斂情況,而且計(jì)算復(fù)雜。隨著樣點(diǎn)增加,高次插值會(huì)帶來(lái)誤差的震動(dòng)現(xiàn)象稱為龍格現(xiàn)象。

  • 分段插值:雖然收斂,但光滑性較差。

  • 樣條插值:樣條插值是使用一種名為樣條的特殊分段多項(xiàng)式進(jìn)行插值的形式。由于樣條插值可以使用低階多項(xiàng)式樣條實(shí)現(xiàn)較小的插值誤差,這樣就避免了使用高階多項(xiàng)式所出現(xiàn)的龍格現(xiàn)象,所以樣條插值得到了流行。

# -*-coding:utf-8 -*-
import numpy as np
from scipy import interpolate
import pylab as pl

x=np.linspace(0,10,11)
#x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
y=np.sin(x)
xnew=np.linspace(0,10,101)
pl.plot(x,y,"ro")

for kind in ["nearest","zero","slinear","quadratic","cubic"]:#插值方式
 #"nearest","zero"為階梯插值
 #slinear 線性插值
 #"quadratic","cubic" 為2階、3階B樣條曲線插值
 f=interpolate.interp1d(x,y,kind=kind)
 # ‘slinear', ‘quadratic' and ‘cubic' refer to a spline interpolation of first, second or third order)
 ynew=f(xnew)
 pl.plot(xnew,ynew,label=str(kind))
pl.legend(loc="lower right")
pl.show()

結(jié)果:

使用python實(shí)現(xiàn)各種插值法的示例

二維插值

方法與一維數(shù)據(jù)插值類似,為二維樣條插值。

# -*- coding: utf-8 -*-
"""
演示二維插值。
"""
import numpy as np
from scipy import interpolate
import pylab as pl
import matplotlib as mpl

def func(x, y):
 return (x+y)*np.exp(-5.0*(x**2 + y**2))

# X-Y軸分為15*15的網(wǎng)格
y,x= np.mgrid[-1:1:15j, -1:1:15j]

fvals = func(x,y) # 計(jì)算每個(gè)網(wǎng)格點(diǎn)上的函數(shù)值 15*15的值
print len(fvals[0])

#三次樣條二維插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')

# 計(jì)算100*100的網(wǎng)格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#僅僅是y值 100*100的值

# 繪圖
# 為了更明顯地比較插值前后的區(qū)別,使用關(guān)鍵字參數(shù)interpolation='nearest'
# 關(guān)閉imshow()內(nèi)置的插值運(yùn)算。
pl.subplot(121)
im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet
#extent=[-1,1,-1,1]為x,y范圍 favals為
pl.colorbar(im1)

pl.subplot(122)
im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")
pl.colorbar(im2)
pl.show()

使用python實(shí)現(xiàn)各種插值法的示例 

左圖為原始數(shù)據(jù),右圖為二維插值結(jié)果圖。

二維插值的三維展示方法

# -*- coding: utf-8 -*-
"""
演示二維插值。
"""
# -*- coding: utf-8 -*-
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt

def func(x, y):
 return (x+y)*np.exp(-5.0*(x**2 + y**2))

# X-Y軸分為20*20的網(wǎng)格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1,1,20)
x, y = np.meshgrid(x, y)#20*20的網(wǎng)格數(shù)據(jù)

fvals = func(x,y) # 計(jì)算每個(gè)網(wǎng)格點(diǎn)上的函數(shù)值 15*15的值

fig = plt.figure(figsize=(9, 6))
#Draw sub-graph2
ax=plt.subplot(1, 2, 1,projection = '3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
plt.colorbar(surf, shrink=0.5, aspect=5)#標(biāo)注

#二維插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')#newfunc為一個(gè)函數(shù)

# 計(jì)算100*100的網(wǎng)格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#僅僅是y值 100*100的值 np.shape(fnew) is 100*100
xnew, ynew = np.meshgrid(xnew, ynew)
ax2=plt.subplot(1, 2, 2,projection = '3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x, y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)#標(biāo)注

plt.show()

使用python實(shí)現(xiàn)各種插值法的示例

左圖的二維數(shù)據(jù)集的函數(shù)值由于樣本較少,會(huì)顯得粗糙。而右圖對(duì)二維樣本數(shù)據(jù)進(jìn)行三次樣條插值,擬合得到更多數(shù)據(jù)點(diǎn)的樣本值,繪圖后圖像明顯光滑多了。

關(guān)于“使用python實(shí)現(xiàn)各種插值法的示例”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,使各位可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),請(qǐng)把它分享出去讓更多的人看到。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI