溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

怎么使用Numpy

發(fā)布時(shí)間:2021-05-26 09:57:18 來(lái)源:億速云 閱讀:182 作者:Leah 欄目:開(kāi)發(fā)技術(shù)

怎么使用Numpy?針對(duì)這個(gè)問(wèn)題,這篇文章詳細(xì)介紹了相對(duì)應(yīng)的分析和解答,希望可以幫助更多想解決這個(gè)問(wèn)題的小伙伴找到更簡(jiǎn)單易行的方法。

import numpy as np

一、創(chuàng)建ndarray對(duì)象

列表轉(zhuǎn)換成ndarray:

>>> a = [1,2,3,4,5]
>>> np.array(a)
array([1, 2, 3, 4, 5])

取隨機(jī)浮點(diǎn)數(shù)

>>> np.random.rand(3, 4)
array([[ 0.16215336, 0.49847764, 0.36217369, 0.6678112 ],
    [ 0.66729648, 0.86538771, 0.32621889, 0.07709784],
    [ 0.05460976, 0.3446629 , 0.35589223, 0.3716221 ]])

取隨機(jī)整數(shù)

>>> np.random.randint(1, 5, size=(3,4))
array([[2, 3, 1, 2],
    [3, 4, 4, 4],
    [4, 4, 4, 3]])

取零

>>> np.zeros((3,4))
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

取一

>>> np.ones((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取空(最好別用,了解一下,版本不同返回值不一樣)

>>> np.empty((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取整數(shù)零或一

>>> np.ones((3,4),int)
array([[1, 1, 1, 1],
    [1, 1, 1, 1],
    [1, 1, 1, 1]])

>>> np.zeros((3,4),int)
array([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])

仿range命令創(chuàng)建ndarray:

>>> np.arange(2,10,2) # 開(kāi)始,結(jié)束,步長(zhǎng)
array([2, 4, 6, 8])

二、ndarray屬性的查看和操作:

看ndarray屬性:

>>> a = [[1,2,3,4,5],[6,7,8,9,0]]
>>> b = np.array(a)
>>> b.ndim #維度個(gè)數(shù)(看幾維)
2
>>> b.shape #維度大小(看具體長(zhǎng)寬)
(5,2)
>>>b.dtype
dtype('int32')

ndarray創(chuàng)建時(shí)指定屬性:

>>> np.array([1,2,3,4,5],dtype=np.float64)
array([ 1., 2., 3., 4., 5.])

>>> np.zeros((2,5),dtype=np.int32)
array([[0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])

屬性強(qiáng)轉(zhuǎn):

>>> a = np.array([1,2,3,4,5],dtype=np.float64)
>>> a
array([ 1., 2., 3., 4., 5.])

>>> a.astype(np.int32)
 array([1, 2, 3, 4, 5])

三、簡(jiǎn)單操作:

批量運(yùn)算:

>>> a = np.array([1,2,3,4,5],dtype=np.int32)
>>> a
array([1, 2, 3, 4, 5])

>>> a + a
array([ 2, 4, 6, 8, 10])

>>> a * a
array([ 1, 4, 9, 16, 25])

>>> a - 2
array([-1, 0, 1, 2, 3])

>>> a / 2
array([ 0.5, 1. , 1.5, 2. , 2.5])

#等等

改變維度:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

>>> a.reshape((5,2))
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])

矩陣轉(zhuǎn)換(和改變維度有本質(zhì)區(qū)別,仔細(xì)):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

>>> a.transpose()
array([[1, 6],
    [2, 7],
    [3, 8],
    [4, 9],
    [5, 0]])

打亂(只能打亂一維):

>>> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32)
>>> a
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])
    
>>> np.random.shuffle(a)
>>> a
array([[9, 0],
    [1, 2],
    [7, 8],
    [5, 6],
    [3, 4]])

四、切片和索引:

一維數(shù)組(和普通列表一樣):

>>> a = np.array(range(10))
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a[3]
3

>>> a[2:9:2]
array([2, 4, 6, 8])

多維數(shù)組(也差不了多少):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

>>> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

>>> a[:, 1:4]
array([[ 2, 3, 4],
    [ 7, 8, 9],
    [12, 13, 14]])

條件索引:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

>>> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

>>> a > 5
array([[False, False, False, False, False],
    [ True, True, True, True, False],
    [ True, True, True, True, True]], dtype=bool)

>>> a[a>5]
array([ 6, 7, 8, 9, 11, 12, 13, 14, 15])

>>> a%3 == 0
Out[128]: 
array([[False, False, True, False, False],
    [ True, False, False, True, True],
    [False, True, False, False, True]], dtype=bool)

>>> a[a%3 == 0]
array([ 3, 6, 9, 0, 12, 15])

五、函數(shù)(numpy核心知識(shí)點(diǎn))

計(jì)算函數(shù)(都不想舉例了,太簡(jiǎn)單。。):

np.ceil(): 向上最接近的整數(shù),參數(shù)是 number 或 array
np.floor(): 向下最接近的整數(shù),參數(shù)是 number 或 array
np.rint(): 四舍五入,參數(shù)是 number 或 array
np.isnan(): 判斷元素是否為 NaN(Not a Number),參數(shù)是 number 或 array
np.multiply(): 元素相乘,參數(shù)是 number 或 array
np.divide(): 元素相除,參數(shù)是 number 或 array
np.abs():元素的絕對(duì)值,參數(shù)是 number 或 array
np.where(condition, x, y): 三元運(yùn)算符,x if condition else y
>>> a = np.random.randn(3,4)
>>> a
array([[ 0.37091654, 0.53809133, -0.99434523, -1.21496837],
    [ 0.00701986, 1.65776152, 0.41319601, 0.41356973],
    [-0.32922342, 1.07773886, -0.27273258, 0.29474435]])

>>> np.ceil(a)   
array([[ 1., 1., -0., -1.],
    [ 1., 2., 1., 1.],
    [-0., 2., -0., 1.]])


>>> np.where(a>0, 10, 0)
array([[10, 10, 0, 0],
    [10, 10, 10, 10],
    [ 0, 10, 0, 10]])

統(tǒng)計(jì)函數(shù)

np.mean():所有元素的平均值
np.sum():所有元素的和,參數(shù)是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,參數(shù)是 number 或 array
np.std():所有元素的標(biāo)準(zhǔn)差
np.var():所有元素的方差,參數(shù)是 number 或 array
np.argmax():最大值的下標(biāo)索引值,
np.argmin():最小值的下標(biāo)索引值,參數(shù)是 number 或 array
np.cumsum():返回一個(gè)一維數(shù)組,每個(gè)元素都是之前所有元素的累加和
np.cumprod():返回一個(gè)一維數(shù)組,每個(gè)元素都是之前所有元素的累乘積,參數(shù)是 number 或 array
>>> a = np.arange(12).reshape(3,4).transpose()
>>> a
array([[ 0, 4, 8],
    [ 1, 5, 9],
    [ 2, 6, 10],
    [ 3, 7, 11]])

>>> np.mean(a)
5.5

>>> np.sum(a)
66

>>> np.argmax(a)
11

>>> np.std(a)
3.4520525295346629

>>> np.cumsum(a)
array([ 0, 4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)

判斷函數(shù):

np.any(): 至少有一個(gè)元素滿足指定條件,返回True
np.all(): 所有的元素滿足指定條件,返回True
>>> a = np.random.randn(2,3)
>>> a
array([[-0.65750548, 2.24801371, -0.26593284],
    [ 0.31447911, -1.0215645 , -0.4984958 ]])

>>> np.any(a>0)
True

>>> np.all(a>0)
False

去除重復(fù):

np.unique(): 去重
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
    [2, 3, 4]])

>>> np.unique(a)
array([1, 2, 3, 4])

關(guān)于怎么使用Numpy問(wèn)題的解答就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,如果你還有很多疑惑沒(méi)有解開(kāi),可以關(guān)注億速云行業(yè)資訊頻道了解更多相關(guān)知識(shí)。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI