您好,登錄后才能下訂單哦!
對于opencv 它提供了許多已經(jīng)練習(xí)好的模型可供使用,我們需要通過他們來進(jìn)行人臉識(shí)別
參考了網(wǎng)上許多資料
假設(shè)你已經(jīng)配好了開發(fā)環(huán)境 ,在我之前的博客中由開發(fā)環(huán)境的配置。
項(xiàng)目代碼結(jié)構(gòu):
dataSet : 存儲(chǔ)訓(xùn)練用的圖片,他由data_gen生成,當(dāng)然也可以修改代碼由其他方式生成
haarcascade_frontalface_alt.xml 、 haarcascade_frontalface_default.xml: 用于人臉檢測的haar分類器,網(wǎng)上普遍說第一個(gè)效果更好,第二個(gè)運(yùn)行速度更快
data_gen.py:生成我們所需的數(shù)據(jù)
trainer.py: 訓(xùn)練數(shù)據(jù)集
train.yml: 由train.py生成的人臉識(shí)別模型,供后面的人臉識(shí)別使用
recognize.py:視頻中的人臉識(shí)別
data_gen.py
連續(xù)拍20張照片當(dāng)作訓(xùn)練數(shù)據(jù),每個(gè)人建立一組數(shù)據(jù)
import cv2 detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml') cap = cv2.VideoCapture(0) sampleNum = 0 Id = input('enter your id: ') while True: ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = detector.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) # incrementing sample number sampleNum = sampleNum + 1 # saving the captured face in the dataset folder cv2.imwrite("dataSet/User." + str(Id) + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) # cv2.imshow('frame', img) # wait for 100 miliseconds if cv2.waitKey(100) & 0xFF == ord('q'): break # break if the sample number is morethan 20 elif sampleNum > 20: break cap.release() cv2.destroyAllWindows()
train.py
訓(xùn)練數(shù)據(jù)
import cv2 import os import numpy as np from PIL import Image # recognizer = cv2.createLBPHFaceRecognizer() detector = cv2.CascadeClassifier("/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml") recognizer = cv2.face.LBPHFaceRecognizer_create() def get_images_and_labels(path): image_paths = [os.path.join(path, f) for f in os.listdir(path)] face_samples = [] ids = [] for image_path in image_paths: image = Image.open(image_path).convert('L') image_np = np.array(image, 'uint8') if os.path.split(image_path)[-1].split(".")[-1] != 'jpg': continue image_id = int(os.path.split(image_path)[-1].split(".")[1]) faces = detector.detectMultiScale(image_np) for (x, y, w, h) in faces: face_samples.append(image_np[y:y + h, x:x + w]) ids.append(image_id) return face_samples, ids Faces, Ids = get_images_and_labels('dataSet') recognizer.train(Faces, np.array(Ids)) recognizer.save('trainner.yml')
recognize.py
下面就是根據(jù)訓(xùn)練好的模型進(jìn)行人臉識(shí)別,根據(jù)之前生成數(shù)據(jù)的編號(hào),可以填入相對應(yīng)的人名,例如以下示例我訓(xùn)練了三組人的數(shù)據(jù)
import cv2 import numpy as np recognizer = cv2.face.LBPHFaceRecognizer_create() # recognizer = cv2.createLBPHFaceRecognizer() # in OpenCV 2 recognizer.read('/Users/qiuchenglin/PycharmProjects/face_recognize/trainner.yml') # recognizer.load('trainner/trainner.yml') # in OpenCV 2 cascade_path = "/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml" face_cascade = cv2.CascadeClassifier(cascade_path) cam = cv2.VideoCapture(0) # font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 1, 1) # in OpenCV 2 font = cv2.FONT_HERSHEY_SIMPLEX while True: ret, im = cam.read() gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.2, 5) for (x, y, w, h) in faces: cv2.rectangle(im, (x - 50, y - 50), (x + w + 50, y + h + 50), (225, 0, 0), 2) img_id, conf = recognizer.predict(gray[y:y + h, x:x + w]) if conf > 50: if img_id == 1: img_id = 'liuzb' elif img_id == 2: img_id = 'linqc' elif img_id == 3: img_id = 'keaibao' else: img_id = "Unknown" # cv2.cv.PutText(cv2.cv.fromarray(im), str(Id), (x, y + h), font, 255) cv2.putText(im, str(img_id), (x, y), font, 1, (0, 255, 0), 1) cv2.imshow('im', im) if cv2.waitKey(10) & 0xFF == ord('q'): break cam.release() cv2.destroyAllWindows()
簡單的一個(gè)人臉識(shí)別就完成了,只能說準(zhǔn)確率沒有非常高。
之后想辦法進(jìn)行提高。
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持億速云。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。