您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關(guān)Python中相關(guān)分析correlation analysis怎么實現(xiàn)的內(nèi)容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
相關(guān)分析(correlation analysis)
研究兩個或兩個以上隨機變量之間相互依存關(guān)系的方向和密切程度的方法。
線性相關(guān)關(guān)系主要采用皮爾遜(Pearson)相關(guān)系數(shù)r來度量連續(xù)變量之間線性相關(guān)強度;
r>0,線性正相關(guān);r<0,線性負(fù)相關(guān);
r=0,兩個變量之間不存在線性關(guān)系,并不代表兩個變量之間不存在任何關(guān)系。
相關(guān)分析函數(shù)
DataFrame.corr()
Series.corr(other)
函數(shù)說明:
如果由數(shù)據(jù)框調(diào)用corr函數(shù),那么將會計算每個列兩兩之間的相似度
如果由序列調(diào)用corr方法,那么只是該序列與傳入的序列之間的相關(guān)度
返回值:
DataFrame調(diào)用;返回DataFrame
Series調(diào)用:返回一個數(shù)值型,大小為相關(guān)度
import numpy import pandas data = pandas.read_csv( 'C:/Users/ZL/Desktop/Python/5.4/data.csv' ) bins = [ min(data.年齡)-1, 20, 30, 40, max(data.年齡)+1 ] labels = [ '20歲以及以下', '21歲到30歲', '31歲到40歲', '41歲以上' ] data['年齡分層'] = pandas.cut( data.年齡, bins, labels=labels ) ptResult = data.pivot_table( values=['年齡'], index=['年齡分層'], columns=['性別'], aggfunc=[numpy.size] File "<ipython-input-1-ae921a24967f>", line 25 aggfunc=[numpy.size] ^ SyntaxError: unexpected EOF while parsing import numpy import pandas data = pandas.read_csv( 'C:/Users/ZL/Desktop/Python/5.4/data.csv' ) bins = [ min(data.年齡)-1, 20, 30, 40, max(data.年齡)+1 ] labels = [ '20歲以及以下', '21歲到30歲', '31歲到40歲', '41歲以上' ] data['年齡分層'] = pandas.cut( data.年齡, bins, labels=labels ) ptResult = data.pivot_table( values=['年齡'], index=['年齡分層'], columns=['性別'], aggfunc=[numpy.size] ) ptResult Out[4]: size 年齡 性別 女 男 年齡分層 20歲以及以下 111 1950 21歲到30歲 2903 43955 31歲到40歲 735 7994 41歲以上 567 886
感謝各位的閱讀!關(guān)于“Python中相關(guān)分析correlation analysis怎么實現(xiàn)”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學(xué)到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。