您好,登錄后才能下訂單哦!
使用攝像頭追蹤人臉由于血液流動(dòng)引起的面部色素的微小變化實(shí)現(xiàn)實(shí)時(shí)脈搏評(píng)估。
效果如下(演示視頻):
由于這是通過(guò)比較面部色素的變化評(píng)估脈搏所以光線、人體移動(dòng)、不同角度、不同電腦攝像頭等因素均會(huì)影響評(píng)估效果,實(shí)驗(yàn)原理是面部色素對(duì)比,識(shí)別效果存在一定誤差,各位小伙伴且當(dāng)娛樂(lè),代碼如下:
import cv2 import numpy as np import dlib import time from scipy import signal # Constants WINDOW_TITLE = 'Pulse Observer' BUFFER_MAX_SIZE = 500 # Number of recent ROI average values to store MAX_VALUES_TO_GRAPH = 50 # Number of recent ROI average values to show in the pulse graph MIN_HZ = 0.83 # 50 BPM - minimum allowed heart rate MAX_HZ = 3.33 # 200 BPM - maximum allowed heart rate MIN_FRAMES = 100 # Minimum number of frames required before heart rate is computed. Higher values are slower, but # more accurate. DEBUG_MODE = False # Creates the specified Butterworth filter and applies it. def butterworth_filter(data, low, high, sample_rate, order=5): nyquist_rate = sample_rate * 0.5 low /= nyquist_rate high /= nyquist_rate b, a = signal.butter(order, [low, high], btype='band') return signal.lfilter(b, a, data) # Gets the region of interest for the forehead. def get_forehead_roi(face_points): # Store the points in a Numpy array so we can easily get the min and max for x and y via slicing points = np.zeros((len(face_points.parts()), 2)) for i, part in enumerate(face_points.parts()): points[i] = (part.x, part.y) min_x = int(points[21, 0]) min_y = int(min(points[21, 1], points[22, 1])) max_x = int(points[22, 0]) max_y = int(max(points[21, 1], points[22, 1])) left = min_x right = max_x top = min_y - (max_x - min_x) bottom = max_y * 0.98 return int(left), int(right), int(top), int(bottom) # Gets the region of interest for the nose. def get_nose_roi(face_points): points = np.zeros((len(face_points.parts()), 2)) for i, part in enumerate(face_points.parts()): points[i] = (part.x, part.y) # Nose and cheeks min_x = int(points[36, 0]) min_y = int(points[28, 1]) max_x = int(points[45, 0]) max_y = int(points[33, 1]) left = min_x right = max_x top = min_y + (min_y * 0.02) bottom = max_y + (max_y * 0.02) return int(left), int(right), int(top), int(bottom) # Gets region of interest that includes forehead, eyes, and nose. # Note: Combination of forehead and nose performs better. This is probably because this ROI includes eyes, # and eye blinking adds noise. def get_full_roi(face_points): points = np.zeros((len(face_points.parts()), 2)) for i, part in enumerate(face_points.parts()): points[i] = (part.x, part.y) # Only keep the points that correspond to the internal features of the face (e.g. mouth, nose, eyes, brows). # The points outlining the jaw are discarded. min_x = int(np.min(points[17:47, 0])) min_y = int(np.min(points[17:47, 1])) max_x = int(np.max(points[17:47, 0])) max_y = int(np.max(points[17:47, 1])) center_x = min_x + (max_x - min_x) / 2 left = min_x + int((center_x - min_x) * 0.15) right = max_x - int((max_x - center_x) * 0.15) top = int(min_y * 0.88) bottom = max_y return int(left), int(right), int(top), int(bottom) def sliding_window_demean(signal_values, num_windows): window_size = int(round(len(signal_values) / num_windows)) demeaned = np.zeros(signal_values.shape) for i in range(0, len(signal_values), window_size): if i + window_size > len(signal_values): window_size = len(signal_values) - i curr_slice = signal_values[i: i + window_size] if DEBUG_MODE and curr_slice.size == 0: print ('Empty Slice: size={0}, i={1}, window_size={2}'.format(signal_values.size, i, window_size)) print (curr_slice) demeaned[i:i + window_size] = curr_slice - np.mean(curr_slice) return demeaned # Averages the green values for two arrays of pixels def get_avg(roi1, roi2): roi1_green = roi1[:, :, 1] roi2_green = roi2[:, :, 1] avg = (np.mean(roi1_green) + np.mean(roi2_green)) / 2.0 return avg # Returns maximum absolute value from a list def get_max_abs(lst): return max(max(lst), -min(lst)) # Draws the heart rate graph in the GUI window. def draw_graph(signal_values, graph_width, graph_height): graph = np.zeros((graph_height, graph_width, 3), np.uint8) scale_factor_x = float(graph_width) / MAX_VALUES_TO_GRAPH # Automatically rescale vertically based on the value with largest absolute value max_abs = get_max_abs(signal_values) scale_factor_y = (float(graph_height) / 2.0) / max_abs midpoint_y = graph_height / 2 for i in range(0, len(signal_values) - 1): curr_x = int(i * scale_factor_x) curr_y = int(midpoint_y + signal_values[i] * scale_factor_y) next_x = int((i + 1) * scale_factor_x) next_y = int(midpoint_y + signal_values[i + 1] * scale_factor_y) cv2.line(graph, (curr_x, curr_y), (next_x, next_y), color=(0, 255, 0), thickness=1) return graph # Draws the heart rate text (BPM) in the GUI window. def draw_bpm(bpm_str, bpm_width, bpm_height): bpm_display = np.zeros((bpm_height, bpm_width, 3), np.uint8) bpm_text_size, bpm_text_base = cv2.getTextSize(bpm_str, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=2.7, thickness=2) bpm_text_x = int((bpm_width - bpm_text_size[0]) / 2) bpm_text_y = int(bpm_height / 2 + bpm_text_base) cv2.putText(bpm_display, bpm_str, (bpm_text_x, bpm_text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=2.7, color=(0, 255, 0), thickness=2) bpm_label_size, bpm_label_base = cv2.getTextSize('BPM', fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6, thickness=1) bpm_label_x = int((bpm_width - bpm_label_size[0]) / 2) bpm_label_y = int(bpm_height - bpm_label_size[1] * 2) cv2.putText(bpm_display, 'BPM', (bpm_label_x, bpm_label_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6, color=(0, 255, 0), thickness=1) return bpm_display # Draws the current frames per second in the GUI window. def draw_fps(frame, fps): cv2.rectangle(frame, (0, 0), (100, 30), color=(0, 0, 0), thickness=-1) cv2.putText(frame, 'FPS: ' + str(round(fps, 2)), (5, 20), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=1, color=(0, 255, 0)) return frame # Draw text in the graph area def draw_graph_text(text, color, graph_width, graph_height): graph = np.zeros((graph_height, graph_width, 3), np.uint8) text_size, text_base = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, thickness=1) text_x = int((graph_width - text_size[0]) / 2) text_y = int((graph_height / 2 + text_base)) cv2.putText(graph, text, (text_x, text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=color, thickness=1) return graph # Calculate the pulse in beats per minute (BPM) def compute_bpm(filtered_values, fps, buffer_size, last_bpm): # Compute FFT fft = np.abs(np.fft.rfft(filtered_values)) # Generate list of frequencies that correspond to the FFT values freqs = fps / buffer_size * np.arange(buffer_size / 2 + 1) # Filter out any peaks in the FFT that are not within our range of [MIN_HZ, MAX_HZ] # because they correspond to impossible BPM values. while True: max_idx = fft.argmax() bps = freqs[max_idx] if bps < MIN_HZ or bps > MAX_HZ: if DEBUG_MODE: print ('BPM of {0} was discarded.'.format(bps * 60.0)) fft[max_idx] = 0 else: bpm = bps * 60.0 break # It's impossible for the heart rate to change more than 10% between samples, # so use a weighted average to smooth the BPM with the last BPM. if last_bpm > 0: bpm = (last_bpm * 0.9) + (bpm * 0.1) return bpm def filter_signal_data(values, fps): # Ensure that array doesn't have infinite or NaN values values = np.array(values) np.nan_to_num(values, copy=False) # Smooth the signal by detrending and demeaning detrended = signal.detrend(values, type='linear') demeaned = sliding_window_demean(detrended, 15) # Filter signal with Butterworth bandpass filter filtered = butterworth_filter(demeaned, MIN_HZ, MAX_HZ, fps, order=5) return filtered # Get the average value for the regions of interest. Will also draw a green rectangle around # the regions of interest, if requested. def get_roi_avg(frame, view, face_points, draw_rect=True): # Get the regions of interest. fh_left, fh_right, fh_top, fh_bottom = get_forehead_roi(face_points) nose_left, nose_right, nose_top, nose_bottom = get_nose_roi(face_points) # Draw green rectangles around our regions of interest (ROI) if draw_rect: cv2.rectangle(view, (fh_left, fh_top), (fh_right, fh_bottom), color=(0, 255, 0), thickness=2) cv2.rectangle(view, (nose_left, nose_top), (nose_right, nose_bottom), color=(0, 255, 0), thickness=2) # Slice out the regions of interest (ROI) and average them fh_roi = frame[fh_top:fh_bottom, fh_left:fh_right] nose_roi = frame[nose_top:nose_bottom, nose_left:nose_right] return get_avg(fh_roi, nose_roi) # Main function. def run_pulse_observer(detector, predictor, webcam, window): roi_avg_values = [] graph_values = [] times = [] last_bpm = 0 graph_height = 200 graph_width = 0 bpm_display_width = 0 # cv2.getWindowProperty() returns -1 when window is closed by user. while cv2.getWindowProperty(window, 0) == 0: ret_val, frame = webcam.read() # ret_val == False if unable to read from webcam if not ret_val: print ("ERROR: Unable to read from webcam. Was the webcam disconnected? Exiting.") shut_down(webcam) # Make copy of frame before we draw on it. We'll display the copy in the GUI. # The original frame will be used to compute heart rate. view = np.array(frame) # Heart rate graph gets 75% of window width. BPM gets 25%. if graph_width == 0: graph_width = int(view.shape[1] * 0.75) if DEBUG_MODE: print ('Graph width = {0}'.format(graph_width)) if bpm_display_width == 0: bpm_display_width = view.shape[1] - graph_width # Detect face using dlib faces = detector(frame, 0) if len(faces) == 1: face_points = predictor(frame, faces[0]) roi_avg = get_roi_avg(frame, view, face_points, draw_rect=True) roi_avg_values.append(roi_avg) times.append(time.time()) # Buffer is full, so pop the value off the top to get rid of it if len(times) > BUFFER_MAX_SIZE: roi_avg_values.pop(0) times.pop(0) curr_buffer_size = len(times) # Don't try to compute pulse until we have at least the min. number of frames if curr_buffer_size > MIN_FRAMES: # Compute relevant times time_elapsed = times[-1] - times[0] fps = curr_buffer_size / time_elapsed # frames per second # Clean up the signal data filtered = filter_signal_data(roi_avg_values, fps) graph_values.append(filtered[-1]) if len(graph_values) > MAX_VALUES_TO_GRAPH: graph_values.pop(0) # Draw the pulse graph graph = draw_graph(graph_values, graph_width, graph_height) # Compute and display the BPM bpm = compute_bpm(filtered, fps, curr_buffer_size, last_bpm) bpm_display = draw_bpm(str(int(round(bpm))), bpm_display_width, graph_height) last_bpm = bpm # Display the FPS if DEBUG_MODE: view = draw_fps(view, fps) else: # If there's not enough data to compute HR, show an empty graph with loading text and # the BPM placeholder pct = int(round(float(curr_buffer_size) / MIN_FRAMES * 100.0)) loading_text = 'Computing pulse: ' + str(pct) + '%' graph = draw_graph_text(loading_text, (0, 255, 0), graph_width, graph_height) bpm_display = draw_bpm('--', bpm_display_width, graph_height) else: # No faces detected, so we must clear the lists of values and timestamps. Otherwise there will be a gap # in timestamps when a face is detected again. del roi_avg_values[:] del times[:] graph = draw_graph_text('No face detected', (0, 0, 255), graph_width, graph_height) bpm_display = draw_bpm('--', bpm_display_width, graph_height) graph = np.hstack((graph, bpm_display)) view = np.vstack((view, graph)) cv2.imshow(window, view) key = cv2.waitKey(1) # Exit if user presses the escape key if key == 27: shut_down(webcam) # Clean up def shut_down(webcam): webcam.release() cv2.destroyAllWindows() exit(0) def main(): detector = dlib.get_frontal_face_detector() # Predictor pre-trained model can be downloaded from: # http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2 try: predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') except RuntimeError as e: print ('ERROR: \'shape_predictor_68_face_landmarks.dat\' was not found in current directory. ' \ 'Download it from http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2') return webcam = cv2.VideoCapture(0) if not webcam.isOpened(): print ('ERROR: Unable to open webcam. Verify that webcam is connected and try again. Exiting.') webcam.release() return cv2.namedWindow(WINDOW_TITLE) run_pulse_observer(detector, predictor, webcam, WINDOW_TITLE) # run_pulse_observer() returns when the user has closed the window. Time to shut down. shut_down(webcam) if __name__ == '__main__': main()
總結(jié)
以上所述是小編給大家介紹的淺析Python+OpenCV使用攝像頭追蹤人臉面部血液變化實(shí)現(xiàn)脈搏評(píng)估,希望對(duì)大家有所幫助,如果大家有任何疑問(wèn)請(qǐng)給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對(duì)億速云網(wǎng)站的支持!
如果你覺(jué)得本文對(duì)你有幫助,歡迎轉(zhuǎn)載,煩請(qǐng)注明出處,謝謝!
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。