您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關(guān)python中numpy指數(shù)分布的示例分析,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
如下所示:
# Seed random number generator np.random.seed(42) # Compute mean no-hitter time: tau tau = np.mean(nohitter_times) # Draw out of an exponential distribution with parameter tau: inter_nohitter_time inter_nohitter_time = np.random.exponential(tau, 100000) # Plot the PDF and label axes _ = plt.hist(inter_nohitter_time, bins=50, normed=True, histtype='step') _ = plt.xlabel('Games between no-hitters') _ = plt.ylabel('PDF') # Show the plot plt.show()
指數(shù)分布的擬合
# Create an ECDF from real data: x, y x, y = ecdf(nohitter_times) # Create a CDF from theoretical samples: x_theor, y_theor x_theor, y_theor = ecdf(inter_nohitter_time) # Overlay the plots plt.plot(x_theor, y_theor) plt.plot(x, y, marker='.', linestyle='none') # Margins and axis labels plt.margins(0.02) plt.xlabel('Games between no-hitters') plt.ylabel('CDF') # Show the plot plt.show()
關(guān)于“python中numpy指數(shù)分布的示例分析”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。