您好,登錄后才能下訂單哦!
反向傳遞法則是深度學(xué)習(xí)中最為重要的一部分,torch中的backward可以對(duì)計(jì)算圖中的梯度進(jìn)行計(jì)算和累積
這里通過一段程序來演示基本的backward操作以及需要注意的地方
>>> import torch >>> from torch.autograd import Variable >>> x = Variable(torch.ones(2,2), requires_grad=True) >>> y = x + 2 >>> y.grad_fn Out[6]: <torch.autograd.function.AddConstantBackward at 0x229e7068138> >>> y.grad >>> z = y*y*3 >>> z.grad_fn Out[9]: <torch.autograd.function.MulConstantBackward at 0x229e86cc5e8> >>> z Out[10]: Variable containing: 27 27 27 27 [torch.FloatTensor of size 2x2] >>> out = z.mean() >>> out.grad_fn Out[12]: <torch.autograd.function.MeanBackward at 0x229e86cc408> >>> out.backward() # 這里因?yàn)閛ut為scalar標(biāo)量,所以參數(shù)不需要填寫 >>> x.grad Out[19]: Variable containing: 4.5000 4.5000 4.5000 4.5000 [torch.FloatTensor of size 2x2] >>> out # out為標(biāo)量 Out[20]: Variable containing: 27 [torch.FloatTensor of size 1] >>> x = Variable(torch.Tensor([2,2,2]), requires_grad=True) >>> y = x*2 >>> y Out[52]: Variable containing: 4 4 4 [torch.FloatTensor of size 3] >>> y.backward() # 因?yàn)閥輸出為非標(biāo)量,求向量間元素的梯度需要對(duì)所求的元素進(jìn)行標(biāo)注,用相同長度的序列進(jìn)行標(biāo)注 Traceback (most recent call last): File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-53-95acac9c3254>", line 1, in <module> y.backward() File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\variable.py", line 156, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables) File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 86, in backward grad_variables, create_graph = _make_grads(variables, grad_variables, create_graph) File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 34, in _make_grads raise RuntimeError("grad can be implicitly created only for scalar outputs") RuntimeError: grad can be implicitly created only for scalar outputs >>> y.backward(torch.FloatTensor([0.1, 1, 10])) >>> x.grad #注意這里的0.1,1.10為梯度求值比例 Out[55]: Variable containing: 0.2000 2.0000 20.0000 [torch.FloatTensor of size 3] >>> y.backward(torch.FloatTensor([0.1, 1, 10])) >>> x.grad # 梯度累積 Out[57]: Variable containing: 0.4000 4.0000 40.0000 [torch.FloatTensor of size 3] >>> x.grad.data.zero_() # 梯度累積進(jìn)行清零 Out[60]: 0 0 0 [torch.FloatTensor of size 3] >>> x.grad # 累積為空 Out[61]: Variable containing: 0 0 0 [torch.FloatTensor of size 3] >>> y.backward(torch.FloatTensor([0.1, 1, 10])) >>> x.grad Out[63]: Variable containing: 0.2000 2.0000 20.0000 [torch.FloatTensor of size 3]
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持億速云。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場,如果涉及侵權(quán)請(qǐng)聯(lián)系站長郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。