您好,登錄后才能下訂單哦!
我就廢話不多說了,直接上代碼吧!
import torch import torch.nn.functional as F import numpy as np from torch.autograd import Variable ''' pytorch實現(xiàn)focal loss的兩種方式(現(xiàn)在討論的是基于分割任務) 在計算損失函數(shù)的過程中考慮到類別不平衡的問題,假設加上背景類別共有6個類別 ''' def compute_class_weights(histogram): classWeights = np.ones(6, dtype=np.float32) normHist = histogram / np.sum(histogram) for i in range(6): classWeights[i] = 1 / (np.log(1.10 + normHist[i])) return classWeights def focal_loss_my(input,target): ''' :param input: shape [batch_size,num_classes,H,W] 僅僅經(jīng)過卷積操作后的輸出,并沒有經(jīng)過任何激活函數(shù)的作用 :param target: shape [batch_size,H,W] :return: ''' n, c, h, w = input.size() target = target.long() input = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) target = target.contiguous().view(-1) number_0 = torch.sum(target == 0).item() number_1 = torch.sum(target == 1).item() number_2 = torch.sum(target == 2).item() number_3 = torch.sum(target == 3).item() number_4 = torch.sum(target == 4).item() number_5 = torch.sum(target == 5).item() frequency = torch.tensor((number_0, number_1, number_2, number_3, number_4, number_5), dtype=torch.float32) frequency = frequency.numpy() classWeights = compute_class_weights(frequency) ''' 根據(jù)當前給出的ground truth label計算出每個類別所占據(jù)的權(quán)重 ''' # weights=torch.from_numpy(classWeights).float().cuda() weights = torch.from_numpy(classWeights).float() focal_frequency = F.nll_loss(F.softmax(input, dim=1), target, reduction='none') ''' 上面一篇博文講過 F.nll_loss(torch.log(F.softmax(inputs, dim=1),target)的函數(shù)功能與F.cross_entropy相同 可見F.nll_loss中實現(xiàn)了對于target的one-hot encoding編碼功能,將其編碼成與input shape相同的tensor 然后與前面那一項(即F.nll_loss輸入的第一項)進行 element-wise production 相當于取出了 log(p_gt)即當前樣本點被分類為正確類別的概率 現(xiàn)在去掉取log的操作,相當于 focal_frequency shape [num_samples] 即取出ground truth類別的概率數(shù)值,并取了負號 ''' focal_frequency += 1.0#shape [num_samples] 1-P(gt_classes) focal_frequency = torch.pow(focal_frequency, 2) # torch.Size([75]) focal_frequency = focal_frequency.repeat(c, 1) ''' 進行repeat操作后,focal_frequency shape [num_classes,num_samples] ''' focal_frequency = focal_frequency.transpose(1, 0) loss = F.nll_loss(focal_frequency * (torch.log(F.softmax(input, dim=1))), target, weight=None, reduction='elementwise_mean') return loss def focal_loss_zhihu(input, target): ''' :param input: 使用知乎上面大神給出的方案 https://zhuanlan.zhihu.com/p/28527749 :param target: :return: ''' n, c, h, w = input.size() target = target.long() inputs = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) target = target.contiguous().view(-1) N = inputs.size(0) C = inputs.size(1) number_0 = torch.sum(target == 0).item() number_1 = torch.sum(target == 1).item() number_2 = torch.sum(target == 2).item() number_3 = torch.sum(target == 3).item() number_4 = torch.sum(target == 4).item() number_5 = torch.sum(target == 5).item() frequency = torch.tensor((number_0, number_1, number_2, number_3, number_4, number_5), dtype=torch.float32) frequency = frequency.numpy() classWeights = compute_class_weights(frequency) weights = torch.from_numpy(classWeights).float() weights=weights[target.view(-1)]#這行代碼非常重要 gamma = 2 P = F.softmax(inputs, dim=1)#shape [num_samples,num_classes] class_mask = inputs.data.new(N, C).fill_(0) class_mask = Variable(class_mask) ids = target.view(-1, 1) class_mask.scatter_(1, ids.data, 1.)#shape [num_samples,num_classes] one-hot encoding probs = (P * class_mask).sum(1).view(-1, 1)#shape [num_samples,] log_p = probs.log() print('in calculating batch_loss',weights.shape,probs.shape,log_p.shape) # batch_loss = -weights * (torch.pow((1 - probs), gamma)) * log_p batch_loss = -(torch.pow((1 - probs), gamma)) * log_p print(batch_loss.shape) loss = batch_loss.mean() return loss if __name__=='__main__': pred=torch.rand((2,6,5,5)) y=torch.from_numpy(np.random.randint(0,6,(2,5,5))) loss1=focal_loss_my(pred,y) loss2=focal_loss_zhihu(pred,y) print('loss1',loss1) print('loss2', loss2) ''' in calculating batch_loss torch.Size([50]) torch.Size([50, 1]) torch.Size([50, 1]) torch.Size([50, 1]) loss1 tensor(1.3166) loss2 tensor(1.3166) '''
以上這篇pytorch實現(xiàn)focal loss的兩種方式小結(jié)就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。