溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊(cè)×
其他方式登錄
點(diǎn)擊 登錄注冊(cè) 即表示同意《億速云用戶服務(wù)條款》

怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類

發(fā)布時(shí)間:2021-04-06 16:31:36 來(lái)源:億速云 閱讀:437 作者:Leah 欄目:開(kāi)發(fā)技術(shù)

這篇文章給大家介紹怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類,內(nèi)容非常詳細(xì),感興趣的小伙伴們可以參考借鑒,希望對(duì)大家能有所幫助。

import torch
from torch import nn

embedding = nn.Embedding(5, 4) # 假定語(yǔ)料只有5個(gè)詞,詞向量維度為3
sents = [[1, 2, 3], 
   [2, 3, 4]] # 兩個(gè)句子,how:1 are:2 you:3, are:2 you:3 ok:4
embed = embedding(torch.LongTensor(sents))
print(embed) # shape=(2
'''
tensor([[[-0.6991, -0.3340, -0.7701, -0.6255],
   [ 0.2969, 0.4720, -0.9403, 0.2982],
   [ 0.8902, -1.0681, 0.4035, 0.1645]],
  [[ 0.2969, 0.4720, -0.9403, 0.2982],
   [ 0.8902, -1.0681, 0.4035, 0.1645],
   [-0.7944, -0.1766, -1.5941, 0.4544]]], grad_fn=<EmbeddingBackward>)
'''

2.2 nn.RNN

RNN是NLP的常用模型,普通的RNN單元結(jié)構(gòu)如下圖所示:

怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類

RNN單元還有一些變體,主要是單元內(nèi)部的激活函數(shù)不同或數(shù)據(jù)使用了不同計(jì)算。RNN每個(gè)單元存在輸入x與上一時(shí)刻的隱層狀態(tài)h,輸出有y與當(dāng)前時(shí)刻的隱層狀態(tài)。

對(duì)RNN單元的改進(jìn)有LSTM和GRU,這三種類型的模型的輸入數(shù)據(jù)都需要3D的tensor,,,使用時(shí)設(shè)置b atch_first為true時(shí),輸入數(shù)據(jù)的shape為[batch,seq_length, input_dim],第一維為batch的數(shù)量不使用時(shí)設(shè)置為1,第二維序列的長(zhǎng)度,第三維為輸入的維度,通常為詞嵌入的維度。

rnn = RNN(input_dim, hidden_dim, num_layers=1, batch_first, bidirectional)

input_dim 輸入token的特征數(shù)量,使用embeding時(shí)為嵌入的維度
hidden_dim 隱層的單元數(shù),決定RNN的輸出長(zhǎng)度
num_layers 層數(shù)
batch_frist 第一維為batch,反之第一堆為seq_len,默認(rèn)為False
bidirectional 是否為雙向RNN,默認(rèn)為False

output, hidden = rnn(input, hidden)

input 一批輸入數(shù)據(jù),shape為[batch, seq_len, input_dim]
hidden 上一時(shí)刻的隱層狀態(tài),shape為[num_layers * num_directions, batch, hidden_dim]
output 當(dāng)前時(shí)刻的輸出,shape為[batch, seq_len, num_directions*hidden_dim]

import torch
from torch import nn

vocab_size = 5
embed_dim = 3
hidden_dim = 8

embedding = nn.Embedding(vocab_size, embed_dim)
rnn = nn.RNN(embed_dim, hidden_dim, batch_first=True)

sents = [[1, 2, 4], 
   [2, 3, 4]]
h0 = torch.zeros(1, embeded.size(0), 8) # shape=(num_layers*num_directions, batch, hidden_dim)

embeded = embedding(torch.LongTensor(sents))
out, hidden = rnn(embeded, h0) # out.shape=(2,3,8), hidden.shape=(1,2,8)

print(out, hidden) 

'''
tensor([[[-0.1556, -0.2721, 0.1485, -0.2081, -0.2231, -0.1459, -0.0319, 0.2617],
   [-0.0274, 0.1561, -0.0509, -0.1723, -0.2678, -0.2616, 0.0786, 0.4124],
   [ 0.2346, 0.4487, -0.1409, -0.0807, -0.0232, -0.4975, 0.4244, 0.8337]],
  [[ 0.0879, 0.1122, 0.1502, -0.3033, -0.2715, -0.1191, 0.1367, 0.5275],
   [ 0.2258, 0.4395, -0.1365, 0.0135, -0.0777, -0.5221, 0.4683, 0.8115],
   [ 0.0158, 0.3471, 0.0742, -0.0550, -0.0098, -0.5521, 0.5923,0.8782]]],    grad_fn=<TransposeBackward0>) 
tensor([[[ 0.2346, 0.4487, -0.1409, -0.0807, -0.0232, -0.4975, 0.4244, 0.8337],
   [ 0.0158, 0.3471, 0.0742, -0.0550, -0.0098, -0.5521, 0.5923, 0.8782]]],    grad_fn=<ViewBackward>)
'''

2.3 nn.LSTM

LSTM是RNN的一種模型,結(jié)構(gòu)中增加了記憶單元,LSTM單元結(jié)構(gòu)如下圖所示:

怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類

每個(gè)單元存在輸入x與上一時(shí)刻的隱層狀態(tài)h和上一次記憶c,輸出有y與當(dāng)前時(shí)刻的隱層狀態(tài)及當(dāng)前時(shí)刻的記憶c。其使用上和RNN類似。

lstm = LSTM(input_dim, hidden_dim, num_layers=1, batch_first=True, bidirectional)

input_dim 輸入word的特征數(shù)量,使用embeding時(shí)為嵌入的維度
hidden_dim 隱層的單元數(shù)

output, (hidden, cell) = lstm(input, (hidden, cell))

input 一批輸入數(shù)據(jù),shape為[batch, seq_len, input_dim]
hidden 當(dāng)前時(shí)刻的隱層狀態(tài),shape為[num_layers * num_directions, batch, hidden_dim]
cell 當(dāng)前時(shí)刻的記憶狀態(tài),shape為[num_layers * num_directions, batch, hidden_dim]
output 當(dāng)前時(shí)刻的輸出,shape為[batch, seq_len, num_directions*hidden_dim]

2.4 nn.GRU

GRU也是一種RNN單元,但它比LSTM簡(jiǎn)化許多,普通的GRU單元結(jié)構(gòu)如下圖所示:

怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類

每個(gè)單元存在輸入x與上一時(shí)刻的隱層狀態(tài)h,輸出有y與當(dāng)前時(shí)刻的隱層狀態(tài)。

rnn = GRU(input_dim, hidden_dim, num_layers=1, batch_first=True, bidirectional)

input_dim 輸入word的特征數(shù)量,使用embeding時(shí)為嵌入的維度
hidden_dim 隱層的單元數(shù)

output, hidden = rnn(input, hidden)

input 一批輸入數(shù)據(jù),shape為[batch, seq_len, input_dim]
hidden 上一時(shí)刻的隱層狀態(tài),shape為[num_layers*num_directions, batch, hidden_dim]
output 當(dāng)前時(shí)刻的輸出,shape為[batch, seq_len, num_directions*hidden_size]

2.5 損失函數(shù)

MSELoss均方誤差

怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類

輸入x,y可以是任意的shape,但要保持相同的shape

CrossEntropyLoss 交叉熵誤差

怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類

x : 包含每個(gè)類的得分,2-D tensor, shape=(batch, n)

class: 長(zhǎng)度為batch 的 1D tensor,每個(gè)數(shù)值為類別的索引(0到 n-1)

3 字符級(jí)RNN的分類應(yīng)用

這里先介紹字符極詞向量的訓(xùn)練與使用。語(yǔ)料庫(kù)使用nltk的names語(yǔ)料庫(kù),訓(xùn)練根據(jù)人名預(yù)測(cè)對(duì)應(yīng)的性別,names語(yǔ)料庫(kù)有兩個(gè)分類,female與male,每個(gè)分類下對(duì)應(yīng)約4000個(gè)人名。這個(gè)語(yǔ)料庫(kù)是比較適合字符級(jí)RNN的分類應(yīng)用,因?yàn)槿嗣容^短,不能再做分詞以使用詞向量。

首次使用nltk的names語(yǔ)料庫(kù)要先下載下來(lái),運(yùn)行代碼nltk.download('names')即可。

字符級(jí)RNN模型的詞匯表很簡(jiǎn)單,就是單個(gè)字符的集合,對(duì)于英文來(lái)說(shuō),只有26個(gè)字母,外加空格等會(huì)出現(xiàn)在名字中間的字符,見(jiàn)第14行代碼。出于簡(jiǎn)化的目的,所有名字統(tǒng)一轉(zhuǎn)換為小寫(xiě)。

神經(jīng)網(wǎng)絡(luò)很簡(jiǎn)單,一層RNN網(wǎng)絡(luò),用于學(xué)習(xí)名字序列的特征。一層全連接網(wǎng)絡(luò),用于從將高維特征映射到性別的二分類上。這部分代碼由CharRNN類實(shí)現(xiàn)。這里沒(méi)有使用embeding層,而是使用字符的one-hot編碼,當(dāng)然使用Embeding也是可以的。

網(wǎng)絡(luò)的訓(xùn)練和使用封裝為Model類,提供三個(gè)方法。train(), evaluate(),predict()分別用于訓(xùn)練,評(píng)估和預(yù)測(cè)使用。具體見(jiàn)下面的代碼及注釋。

import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import sklearn
import string
import random
nltk.download('names')
from nltk.corpus import names

USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")

chars = string.ascii_lowercase + '-' + ' ' + "'"

'''
將名字編碼為向量:每個(gè)字符為one-hot編碼,將多個(gè)字符的向量進(jìn)行堆疊
abc = [ [1, 0, ...,0]
  [0, 1, 0, ..]
  [0, 0, 1, ..] ]
abc.shape = (len("abc"), len(chars))
'''
def name2vec(name):
 ids = [chars.index(c) for c in name if c not in ["\\"]]

 a = np.zeros(shape=(len(ids), len(chars)))
 for i, idx in enumerate(ids):
  a[i][idx] = 1
 return a


def load_data():
 female_file, male_file = names.fileids()

 f1_names = names.words(female_file)
 f2_names = names.words(male_file)

 data_set = [(name.lower(), 0) for name in f1_names] + [(name.lower(), 1) for name in f2_names]
 data_set = [(name2vec(name), sexy) for name, sexy in data_set]
 random.shuffle(data_set)
 return data_set


class CharRNN(nn.Module):
 def __init__(self, vocab_size, hidden_size, output_size):
  super(CharRNN, self).__init__()
  self.vocab_size = vocab_size
  self.hidden_size = hidden_size
  self.output_size = output_size

  self.rnn = nn.RNN(vocab_size, hidden_size, batch_first=True)
  self.liner = nn.Linear(hidden_size, output_size)

 def forward(self, input):
  h0 = torch.zeros(1, 1, self.hidden_size, device=device) # 初始hidden state
  output, hidden = self.rnn(input, h0)
  output = output[:, -1, :] # 只使用最終時(shí)刻的輸出作為特征
  output = self.liner(output)
  output = F.softmax(output, dim=1)
  return output

hidden_dim = 128
output_dim = 2

class Model:
 def __init__(self, epoches=100):
  self.model = CharRNN(len(chars), hidden_dim , output_dim)
  self.model.to(device)
  self.epoches = epoches

 def train(self, train_set):
  loss_func = nn.CrossEntropyLoss()
  optimizer = torch.optim.RMSprop(self.model.parameters(), lr=0.0003)

  for epoch in range(self.epoches):
   total_loss = 0
   for x in range(1000):# 每輪隨機(jī)樣本訓(xùn)練1000次
    name, sexy = random.choice(train_set)
    # RNN的input要求shape為[batch, seq_len, embed_dim],由于名字為變長(zhǎng),也不準(zhǔn)備好將其填充為定長(zhǎng),因此batch_size取1,將取的名字放入單個(gè)元素的list中。
    name_tensor = torch.tensor([name], dtype=torch.float, device=device)
    # torch要求計(jì)算損失時(shí),只提供類別的索引值,不需要one-hot表示
    sexy_tensor = torch.tensor([sexy], dtype=torch.long, device=device)

    optimizer.zero_grad()

    pred = self.model(name_tensor) # [batch, out_dim]
    loss = loss_func(pred, sexy_tensor)
    loss.backward()
    total_loss += loss
    optimizer.step()
   print("Training: in epoch {} loss {}".format(epoch, total_loss/1000))

 def evaluate(self, test_set):
  with torch.no_grad(): # 評(píng)估時(shí)不進(jìn)行梯度計(jì)算
   correct = 0
   for x in range(1000): # 從測(cè)試集中隨機(jī)采樣測(cè)試1000次
    name, sexy = random.choice(test_set)
    name_tensor = torch.tensor([name], dtype=torch.float, device=device)

    pred = self.model(name_tensor)
    if torch.argmax(pred).item() == sexy:
     correct += 1

   print('Evaluating: test accuracy is {}%'.format(correct/10.0))

 def predict(self, name):
  p = name2vec(name.lower())
  name_tensor = torch.tensor([p], dtype=torch.float, device=device)
  with torch.no_grad():
   out = self.model(name_tensor)
   out = torch.argmax(out).item()
   sexy = 'female' if out == 0 else 'male'
   print('{} is {}'.format(name, sexy))


if __name__ == "__main__":
 model = Model(10)
 data_set = load_data()
 train, test = sklearn.model_selection.train_test_split(data_set)
 model.train(train)
 model.evaluate(test)
 model.predict("Jim")
 model.predict('Kate')
'''
Evaluating: test accuracy is 82.6%
Jim is male
Kate is female
'''

4 基于字符級(jí)RNN的文本生成

文本生成的思想是,通過(guò)讓神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)下一個(gè)輸出是哪個(gè)字符來(lái)訓(xùn)練權(quán)重參數(shù)。這里我們?nèi)允褂胣ames語(yǔ)料庫(kù),嘗試訓(xùn)練一個(gè)生成指定性別人名的神經(jīng)網(wǎng)絡(luò)化。與分類不同的是分類只計(jì)算最終狀態(tài)輸出的誤差而生成要計(jì)算序列每一步計(jì)算上的誤差,因此訓(xùn)練時(shí)要逐個(gè)字符的輸入到網(wǎng)絡(luò)。由于是根據(jù)性別來(lái)生成人名,因此把性別的one-hot向量concat到輸入數(shù)據(jù)里,作為訓(xùn)練數(shù)據(jù)的一部分。

模型由類CharRNN實(shí)現(xiàn),模型的訓(xùn)練和使用由Model類實(shí)現(xiàn),提供了train(), sample()方法,前者用于訓(xùn)練模型,后者用于從訓(xùn)練中進(jìn)行采樣生成。

# coding=utf-8
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import string
import random
import nltk
nltk.download('names')
from nltk.corpus import names

USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")

# 使用符號(hào)!作為名字的結(jié)束標(biāo)識(shí)
chars = string.ascii_lowercase + '-' + ' ' + "'" + '!'

hidden_dim = 128
output_dim = len(chars)

# name abc encode as [[1, ...], [0,1,...], [0,0,1...]]
def name2input(name):
 ids = [chars.index(c) for c in name if c not in ["\\"]]
 a = np.zeros(shape=(len(ids), len(chars)), dtype=np.long)
 for i, idx in enumerate(ids):
  a[i][idx] = 1
 return a

# name abc encode as [0 1 2]
def name2target(name):
 ids = [chars.index(c) for c in name if c not in ["\\"]]
 return ids

# female=[[1, 0]] male=[[0,1]]
def sexy2input(sexy):
 a = np.zeros(shape=(1, 2), dtype=np.long)
 a[0][sexy] = 1
 return a


def load_data():
 female_file, male_file = names.fileids()

 f1_names = names.words(female_file)
 f2_names = names.words(male_file)

 data_set = [(name.lower(), 0) for name in f1_names] + [(name.lower(), 1) for name in f2_names]
 random.shuffle(data_set)
 print(data_set[:10])
 return data_set

'''
[('yoshiko', 0), ('timothea', 0), ('giorgi', 1), ('thedrick', 1), ('tessie', 0), ('keith', 1), ('carena', 0), ('anthea', 0), ('cathyleen', 0), ('almeta', 0)]
'''
class CharRNN(nn.Module):
 def __init__(self, vocab_size, hidden_size, output_size):
  super(CharRNN, self).__init__()
  self.vocab_size = vocab_size
  self.hidden_size = hidden_size
  self.output_size = output_size
  # 輸入維度增加了性別的one-hot嵌入,dim+=2
  self.rnn = nn.GRU(vocab_size+2, hidden_size, batch_first=True)
  self.liner = nn.Linear(hidden_size, output_size)

 def forward(self, sexy, name, hidden=None):
  if hidden is None:
   hidden = torch.zeros(1, 1, self.hidden_size, device=device) # 初始hidden state
  # 對(duì)每個(gè)輸入字符,將性別向量嵌入到頭部
  input = torch.cat([sexy, name], dim=2)
  output, hidden = self.rnn(input, hidden)
  output = self.liner(output)
  output = F.dropout(output, 0.3)
  output = F.softmax(output, dim=2)
  return output.view(1, -1), hidden


class Model:
 def __init__(self, epoches):
  self.model = CharRNN(len(chars), hidden_dim , output_dim)
  self.model.to(device)
  self.epoches = epoches

 def train(self, train_set):
  loss_func = nn.CrossEntropyLoss()
  optimizer = torch.optim.RMSprop(self.model.parameters(), lr=0.001)

  for epoch in range(self.epoches):
   total_loss = 0
   for x in range(1000): # 每輪隨機(jī)樣本訓(xùn)練1000次
    loss = 0
    name, sexy = random.choice(train_set)
    optimizer.zero_grad()
    hidden = torch.zeros(1, 1, hidden_dim, device=device)
    # 對(duì)于姓名kate,將kate作為輸入,ate!作為訓(xùn)輸出,依次將每個(gè)字符輸入網(wǎng)絡(luò),以計(jì)算誤差
    for x, y in zip(list(name), list(name[1:]+'!')):
     name_tensor = torch.tensor([name2input(x)], dtype=torch.float, device=device)
     sexy_tensor = torch.tensor([sexy2input(sexy)], dtype=torch.float, device=device)
     target_tensor = torch.tensor(name2target(y), dtype=torch.long, device=device)

     pred, hidden = self.model(sexy_tensor, name_tensor, hidden)
     loss += loss_func(pred, target_tensor)

    loss.backward()
    optimizer.step()

    total_loss += loss/(len(name) - 1)

   print("Training: in epoch {} loss {}".format(epoch, total_loss/1000))

 def sample(self, sexy, start):
  max_len = 8
  result = []
  with torch.no_grad():
   hidden = None
   for c in start:
    sexy_tensor = torch.tensor([sexy2input(sexy)], dtype=torch.float, device=device)
    name_tensor = torch.tensor([name2input(c)], dtype=torch.float, device=device)
    pred, hidden = self.model(sexy_tensor, name_tensor, hidden)

   c = start[-1]
   while c != '!':
    sexy_tensor = torch.tensor([sexy2input(sexy)], dtype=torch.float, device=device)
    name_tensor = torch.tensor([name2input(c)], dtype=torch.float, device=device)
    pred, hidden = self.model(sexy_tensor, name_tensor, hidden)
    topv, topi = pred.topk(1)
    c = chars[topi]

    # c = chars[torch.argmax(pred)]
    result.append(c)

    if len(result) > max_len:
     break

  return start + "".join(result[:-1])


if __name__ == "__main__":
 model = Model(10)
 data_set = load_data()

 model.train(data_set)
 print(model.sample(0, "ka"))
 c = input('please input name prefix: ')
 while c != 'q':
  print(model.sample(1, c))
  print(model.sample(0, c))
  c = input('please input name prefix: ')

關(guān)于怎么在Pytorch中利用CharRNN實(shí)現(xiàn)文本分類就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,可以學(xué)到更多知識(shí)。如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到。

向AI問(wèn)一下細(xì)節(jié)

免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。

AI