您好,登錄后才能下訂單哦!
本篇文章為大家展示了怎么在tensorflow中利用mnis加載數(shù)據(jù),內(nèi)容簡(jiǎn)明扼要并且容易理解,絕對(duì)能使你眼前一亮,通過(guò)這篇文章的詳細(xì)介紹希望你能有所收獲。
TensorFlow? 是一個(gè)采用數(shù)據(jù)流圖(data flow graphs),用于數(shù)值計(jì)算的開(kāi)源軟件庫(kù)。節(jié)點(diǎn)(Nodes)在圖中表示數(shù)學(xué)操作,圖中的線(edges)則表示在節(jié)點(diǎn)間相互聯(lián)系的多維數(shù)據(jù)數(shù)組,即張量(tensor)。它靈活的架構(gòu)讓你可以在多種平臺(tái)上展開(kāi)計(jì)算,例如臺(tái)式計(jì)算機(jī)中的一個(gè)或多個(gè)CPU(或GPU),服務(wù)器,移動(dòng)設(shè)備等等。TensorFlow 最初由Google大腦小組(隸屬于Google機(jī)器智能研究機(jī)構(gòu))的研究員和工程師們開(kāi)發(fā)出來(lái),用于機(jī)器學(xué)習(xí)和深度神經(jīng)網(wǎng)絡(luò)方面的研究,但這個(gè)系統(tǒng)的通用性使其也可廣泛用于其他計(jì)算領(lǐng)域。
%matplotlib from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt mnist = input_data.read_data_sets('MNIST_data', one_hot=True) print('Training data size: ', mnist.train.num_examples) print('Validation data size: ', mnist.validation.num_examples) print('Test data size: ', mnist.test.num_examples) img0 = mnist.train.images[0].reshape(28,28) img1 = mnist.train.images[1].reshape(28,28) img2 = mnist.train.images[2].reshape(28,28) img3 = mnist.train.images[3].reshape(28,28) fig = plt.figure(figsize=(10,10)) ax0 = fig.add_subplot(221) ax1 = fig.add_subplot(222) ax2 = fig.add_subplot(223) ax3 = fig.add_subplot(224) ax0.imshow(img0) ax1.imshow(img1) ax2.imshow(img2) ax3.imshow(img3) fig.show()
畫(huà)圖結(jié)果:
上述內(nèi)容就是怎么在tensorflow中利用mnis加載數(shù)據(jù),你們學(xué)到知識(shí)或技能了嗎?如果還想學(xué)到更多技能或者豐富自己的知識(shí)儲(chǔ)備,歡迎關(guān)注億速云行業(yè)資訊頻道。
免責(zé)聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如果涉及侵權(quán)請(qǐng)聯(lián)系站長(zhǎng)郵箱:is@yisu.com進(jìn)行舉報(bào),并提供相關(guān)證據(jù),一經(jīng)查實(shí),將立刻刪除涉嫌侵權(quán)內(nèi)容。