您好,登錄后才能下訂單哦!
這篇文章給大家介紹怎么在TensorBoard中使用graph模塊,內(nèi)容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。
TensorBoard中的graph是一種計算圖,里面的點用于表示Tensor本身或者運算符,圖中的邊則代表Tensor的流動或者控制關(guān)系。
本文主要從代碼的層面,分析graph的數(shù)據(jù)來源與結(jié)構(gòu)。
一般來說,我們在啟動TensorBoard的時候會使用--logdir參數(shù)配置文件路徑(或者設(shè)置數(shù)據(jù)庫位置),這些日志文件為TensorBoard提供了數(shù)據(jù)。于是我們打開一個日志文件,查看里面的內(nèi)容
我們看到,文件是通過二進制展示的,因此無法直接讀取文件的內(nèi)容。
回到瀏覽器中,進入graph頁面,通過開發(fā)者工具發(fā)現(xiàn),構(gòu)造圖的時候調(diào)用了一個接口
http://localhost:6006/data/plugin/graphs/graph?large_attrs_key=_too_large_attrs&limit_attr_size=1024&run=task1
用瀏覽器打開這個地址,看到以下內(nèi)容
node { name: "Input/X" op: "Placeholder" attr { key: "_output_shapes" value { list { shape { unknown_rank: true } } } } attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { unknown_rank: true } } } } ...
每個node都能夠與圖中的一個節(jié)點相對應(yīng),因此我們可以確定,這個接口里返回的node,就是構(gòu)成圖所需要的數(shù)據(jù)結(jié)構(gòu)。
那么,TensorBoard是如何將日志文件轉(zhuǎn)化為圖的呢?
TesnorBoard中的每個模塊都是以plugin存在的,我們進入tensorboard/plugin/graph/graphs_plungin.py,在這個文件中定義了graph相關(guān)的接口
def get_plugin_apps(self): return { '/graph': self.graph_route, '/runs': self.runs_route, '/run_metadata': self.run_metadata_route, '/run_metadata_tags': self.run_metadata_tags_route, }
我們可以看到,‘/graph'這個接口返回值為self.graph_route,在這個文件中搜索graph_route方法
@wrappers.Request.application def graph_route(self, request): """Given a single run, return the graph definition in protobuf format.""" run = request.args.get('run') if run is None: return http_util.Respond( request, 'query parameter "run" is required', 'text/plain', 400) limit_attr_size = request.args.get('limit_attr_size', None) if limit_attr_size is not None: try: limit_attr_size = int(limit_attr_size) except ValueError: return http_util.Respond( request, 'query parameter `limit_attr_size` must be an integer', 'text/plain', 400) large_attrs_key = request.args.get('large_attrs_key', None) try: result = self.graph_impl(run, limit_attr_size, large_attrs_key) except ValueError as e: return http_util.Respond(request, e.message, 'text/plain', code=400) else: if result is not None: (body, mime_type) = result # pylint: disable=unpacking-non-sequence return http_util.Respond(request, body, mime_type) else: return http_util.Respond(request, '404 Not Found', 'text/plain', code=404)
在這個方法中,分別取了“run”,”limit_attr_size“和“l(fā)arge_attrs_key”三個參數(shù),和前面url所調(diào)用的參數(shù)一致,說明這個是我們要找的方法。在方法的最后,調(diào)用了self.graph_impl生成了圖,我們繼續(xù)查看這個方法
def graph_impl(self, run, limit_attr_size=None, large_attrs_key=None): """Result of the form `(body, mime_type)`, or `None` if no graph exists.""" try: graph = self._multiplexer.Graph(run) except ValueError: return None # This next line might raise a ValueError if the limit parameters # are invalid (size is negative, size present but key absent, etc.). process_graph.prepare_graph_for_ui(graph, limit_attr_size, large_attrs_key) return (str(graph), 'text/x-protobuf') # pbtxt
這個方法調(diào)用了self._multiplexer.Graph(run)生成圖。_multiplexer是一個event_multiplexer實例,在graph_plugln初始化時通過base_plaugin.TBContext獲得。
def __init__(self, context): """Instantiates GraphsPlugin via TensorBoard core. Args: context: A base_plugin.TBContext instance. """ self._multiplexer = context.multiplexer
進入tensorboard/backend/event_processing/event_multiplexer,找到Graph方法
def Graph(self, run): """Retrieve the graph associated with the provided run. Args: run: A string name of a run to load the graph for. Raises: KeyError: If the run is not found. ValueError: If the run does not have an associated graph. Returns: The `GraphDef` protobuf data structure. """ accumulator = self.GetAccumulator(run) return accumulator.Graph() def GetAccumulator(self, run): """Returns EventAccumulator for a given run. Args: run: String name of run. Returns: An EventAccumulator object. Raises: KeyError: If run does not exist. """ with self._accumulators_mutex: return self._accumulators[run]
Graph方法獲取了run對應(yīng)的accumulator實例,并返回了這個實例的Graph方法的返回值。我們進入tensorboard/backend/event_processing/event_accumulator,找到Graph()方法
def Graph(self): """Return the graph definition, if there is one. If the graph is stored directly, return that. If no graph is stored directly but a metagraph is stored containing a graph, return that. Raises: ValueError: If there is no graph for this run. Returns: The `graph_def` proto. """ graph = tf.GraphDef() if self._graph is not None: graph.ParseFromString(self._graph) return graph raise ValueError('There is no graph in this EventAccumulator')
事實上,它返回了一個GraphDef圖,因此我們也可以通過將日志轉(zhuǎn)換為GraphDef的方式讀取日志。
# 導入要用到的基本模塊。為了在python2、python3 中可以使用E侶兼容的 print 函數(shù) from __future__ import print_function import numpy as np import tensorflow as tf # 創(chuàng)建圖和Session graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) #日志路徑 model_fn = '/log/events.out.tfevents.1535957014.ubuntu' for e in tf.train.summary_iterator(model_fn): if e.HasField('graph_def'): graph = e.graph_def; graph_def = tf.GraphDef() graph_def.ParseFromString(graph) print(graph_def)
關(guān)于怎么在TensorBoard中使用graph模塊就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發(fā)布的內(nèi)容(圖片、視頻和文字)以原創(chuàng)、轉(zhuǎn)載和分享為主,文章觀點不代表本網(wǎng)站立場,如果涉及侵權(quán)請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關(guān)證據(jù),一經(jīng)查實,將立刻刪除涉嫌侵權(quán)內(nèi)容。