您好,登錄后才能下訂單哦!
這篇文章主要介紹了php動態(tài)規(guī)劃算法的案例分析,具有一定借鑒價值,需要的朋友可以參考下。希望大家閱讀完這篇文章后大有收獲。下面讓小編帶著大家一起了解一下。
動態(tài)規(guī)劃的基本思想:
動態(tài)規(guī)劃算法通常用于求解具有某種最優(yōu)性質的問題,即我們平常所說的最優(yōu)子結構性質。
動態(tài)規(guī)劃算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題,先求解子問題,然后從這些子問題的解得到原問題的解。與分治法最大的區(qū)別是,適合于用動態(tài)規(guī)劃求解的問題,經分解得到子問題往往不是互相獨立的,即下一個子階段的求解是建立在上一個子階段的解的基礎上,進行進一步的求解。
若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重復計算了很多次。如果我們能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,這樣就可以避免大量的重復計算,節(jié)省時間。我們可以用一個表來記錄所有已解的子問題的答案。不管該子問題以后是否被用到,只要它被計算過,就將其結果填入表中。
問題描述:
給定N中物品和一個背包。物品i的重量是Wi,其價值位Vi ,背包的容量為C。問應該如何選擇裝入背包的物品,使得轉入背包的物品的總價值為最大??
在選擇物品的時候,對每種物品i只有兩種選擇,即裝入背包或不裝入背包。不能講物品i裝入多次,也不能只裝入物品的一部分。因此,該問題被稱為0-1背包問題。
問題分析:令V(i,j)表示在前i(1<=i<=n)個物品中能夠裝入容量為就j(1<=j<=C)的背包中的物品的最大價值,則可以得到如下的動態(tài)規(guī)劃函數:
(1) V(i,0)=V(0,j)=0 (2) (a) V(i,j)=V(i-1,j) j<wi (b) V(i,j)=max{V(i-1,j) ,V(i-1,j-wi)+vi) } j>wi
(1)式表明:如果第i個物品的重量大于背包的容量,則裝人前i個物品得到的最大價值和裝入前i-1個物品得到的最大價是相同的,即物品i不能裝入背包。
(2)式表明:如果第i個物品的重量小于背包的容量,則會有一下兩種情況:(a)如果第i個物品沒有裝入背包,則背包中物品價值就等于把前i-1個物品裝入容量為j的背包中所取得的價值。(b)如果把第i個物品裝入背包,則背包物品的價值等于第i-1個物品裝入容量位j-wi 的背包中的價值加上第i個物品的價值vi; 顯然,取二者中價值最大的作為把前i個物品裝入容量為j的背包中的最優(yōu)解。
感謝你能夠認真閱讀完這篇文章,希望小編分享php動態(tài)規(guī)劃算法的案例分析內容對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業(yè)資訊頻道,遇到問題就找億速云,詳細的解決方法等著你來學習!
免責聲明:本站發(fā)布的內容(圖片、視頻和文字)以原創(chuàng)、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯(lián)系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。