在Theano中加載和處理數(shù)據(jù)集通常需要使用NumPy庫來處理數(shù)據(jù)。以下是一個簡單的示例:
import numpy as np
# 加載數(shù)據(jù)集
data = np.loadtxt('data.txt')
# 處理數(shù)據(jù)集
X = data[:, :2] # 獲取特征數(shù)據(jù)
y = data[:, 2] # 獲取標簽數(shù)據(jù)
# 對數(shù)據(jù)進行標準化處理
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
import theano
import theano.tensor as T
# 定義Theano變量
X_theano = theano.shared(X_train)
y_theano = T.vector('y')
# 定義模型
W = theano.shared(np.random.randn(X_train.shape[1]))
b = theano.shared(0.)
# 定義損失函數(shù)
cost = T.mean(T.square(X_theano.dot(W) + b - y_theano))
# 定義梯度下降更新規(guī)則
alpha = 0.01
updates = [(W, W - alpha * T.grad(cost, W)),
(b, b - alpha * T.grad(cost, b))]
# 編譯Theano函數(shù)
train_model = theano.function(inputs=[], outputs=cost, updates=updates)
通過以上步驟,您可以加載和處理數(shù)據(jù)集,并在Theano中使用它們進行模型訓練。