在Python中,可以使用多線程或者多進(jìn)程來(lái)實(shí)現(xiàn)并發(fā)調(diào)用接口。
import threading
import requests
def call_api(url):
response = requests.get(url)
print(response.json())
urls = ["http://api.example.com/endpoint1", "http://api.example.com/endpoint2", "http://api.example.com/endpoint3"]
threads = []
for url in urls:
t = threading.Thread(target=call_api, args=(url,))
t.start()
threads.append(t)
for t in threads:
t.join()
import multiprocessing
import requests
def call_api(url):
response = requests.get(url)
print(response.json())
urls = ["http://api.example.com/endpoint1", "http://api.example.com/endpoint2", "http://api.example.com/endpoint3"]
processes = []
for url in urls:
p = multiprocessing.Process(target=call_api, args=(url,))
p.start()
processes.append(p)
for p in processes:
p.join()
無(wú)論使用多線程還是多進(jìn)程,都可以實(shí)現(xiàn)并發(fā)調(diào)用接口,加快執(zhí)行速度。需要注意的是,并發(fā)調(diào)用接口可能會(huì)對(duì)接口服務(wù)器造成較大負(fù)擔(dān),所以在實(shí)際使用中需要根據(jù)接口服務(wù)器的性能和需求做出合理的調(diào)整。