要與PyTorch框架集成CodeGemma,您可以按照以下步驟進(jìn)行:
首先,安裝PyTorch框架。您可以在PyTorch官方網(wǎng)站上找到安裝指南:https://pytorch.org/get-started/locally/
創(chuàng)建一個(gè)新的Python文件,并導(dǎo)入PyTorch和CodeGemma庫(kù):
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from codegemma import GemmaClient
client = GemmaClient(api_key='your_api_key', project_id='your_project_id')
請(qǐng)確保替換’your_api_key’和’your_project_id’為您的實(shí)際API密鑰和項(xiàng)目ID。
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc = nn.Linear(3*32*32, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
for epoch in range(10):
for i, (inputs, labels) in enumerate(train_loader):
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
client.log_metric('loss', loss.item())
client.log_epoch_end(epoch)
在此示例中,我們每個(gè)epoch結(jié)束時(shí)記錄損失值。您還可以使用client.log_metric()記錄其他指標(biāo)或client.log_artifact()記錄模型權(quán)重等。
通過(guò)這些步驟,您可以將CodeGemma集成到PyTorch框架中,將訓(xùn)練過(guò)程和指標(biāo)記錄到CodeGemma平臺(tái)上。