在PyTorch中進(jìn)行遷移學(xué)習(xí)通常包括以下步驟:
torchvision.models
中的模型來(lái)加載預(yù)訓(xùn)練模型。import torchvision.models as models
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, num_classes)
for param in model.parameters():
param.requires_grad = False
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for images, labels in dataloader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
以上是在PyTorch中進(jìn)行遷移學(xué)習(xí)的基本步驟,根據(jù)具體的任務(wù)和數(shù)據(jù)集可以對(duì)模型進(jìn)行更多的調(diào)整和優(yōu)化。