在Python爬蟲中處理異常情況非常重要,以確保程序的穩(wěn)定性和可靠性。以下是一些建議和方法來處理異常情況:
try:
# 可能出現(xiàn)異常的代碼
response = requests.get(url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
# 處理異常
print(f"請求錯誤: {e}")
Exception
類。這樣可以更準(zhǔn)確地處理不同類型的異常。例如:try:
# 可能出現(xiàn)異常的代碼
response = requests.get(url)
response.raise_for_status()
except requests.exceptions.HTTPError as e:
# 處理HTTP錯誤
print(f"HTTP錯誤: {e}")
except requests.exceptions.Timeout as e:
# 處理超時(shí)錯誤
print(f"請求超時(shí): {e}")
logging
模塊記錄異常信息,以便在出現(xiàn)問題時(shí)進(jìn)行調(diào)試和分析。例如:import logging
logging.basicConfig(filename="spider.log", level=logging.ERROR)
try:
# 可能出現(xiàn)異常的代碼
response = requests.get(url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
# 記錄異常信息
logging.error(f"請求錯誤: {e}")
import time
def request_with_retry(url, retries=3, timeout=5):
for i in range(retries):
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
if i == retries - 1:
raise e
time.sleep(2 ** i) # 指數(shù)退避策略
time.sleep()
函數(shù)在請求之間添加延遲,或者使用第三方庫(如ratelimit
)來實(shí)現(xiàn)更高級的速率限制策略。通過遵循這些建議和方法,您可以更好地處理Python爬蟲中的異常情況,提高程序的穩(wěn)定性和可靠性。