紅黑樹是一種自平衡二叉搜索樹,它在插入和刪除元素時(shí)能夠保持樹的平衡,從而保證了樹的查找、插入和刪除操作的時(shí)間復(fù)雜度都是O(logn)。紅黑樹有以下幾個(gè)性質(zhì):
下面是一個(gè)簡(jiǎn)單的C++實(shí)現(xiàn)紅黑樹的例子:
#include <iostream>
#include <vector>
enum Color { RED, BLACK };
template <typename T>
struct Node {
T data;
Color color;
Node* left;
Node* right;
Node* parent;
Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};
template <typename T>
class RedBlackTree {
public:
RedBlackTree() : root(nullptr) {}
void insert(T data) {
Node<T>* node = new Node<T>(data);
insertNode(node);
fixInsert(node);
}
void printInorder() {
printInorderHelper(root);
std::cout << std::endl;
}
private:
Node<T>* root;
void insertNode(Node<T>* node) {
Node<T>* temp = nullptr;
Node<T>* current = root;
while (current != nullptr) {
temp = current;
if (node->data < current->data) {
current = current->left;
} else {
current = current->right;
}
}
node->parent = temp;
if (temp == nullptr) {
root = node;
} else if (node->data < temp->data) {
temp->left = node;
} else {
temp->right = node;
}
}
void fixInsert(Node<T>* node) {
while (node != root && node->parent->color == RED) {
if (node->parent == node->parent->parent->left) {
Node<T>* uncle = node->parent->parent->right;
if (uncle->color == RED) {
node->parent->color = BLACK;
uncle->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
leftRotate(node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
rightRotate(node->parent->parent);
}
} else {
Node<T>* uncle = node->parent->parent->left;
if (uncle->color == RED) {
node->parent->color = BLACK;
uncle->color = BLACK;
node->parent->parent->color = RED;
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
rightRotate(node);
}
node->parent->color = BLACK;
node->parent->parent->color = RED;
leftRotate(node->parent->parent);
}
}
}
root->color = BLACK;
}
void leftRotate(Node<T>* node) {
Node<T>* temp = node->right;
node->right = temp->left;
if (temp->left != nullptr) {
temp->left->parent = node;
}
temp->parent = node->parent;
if (node->parent == nullptr) {
root = temp;
} else if (node == node->parent->left) {
node->parent->left = temp;
} else {
node->parent->right = temp;
}
temp->left = node;
node->parent = temp;
}
void rightRotate(Node<T>* node) {
Node<T>* temp = node->left;
node->left = temp->right;
if (temp->right != nullptr) {
temp->right->parent = node;
}
temp->parent = node->parent;
if (node->parent == nullptr) {
root = temp;
} else if (node == node->parent->right) {
node->parent->right