溫馨提示×

如何使用C++矩陣類解決線性方程組

c++
小樊
89
2024-08-29 22:37:26
欄目: 編程語言

要使用C++矩陣類解決線性方程組,首先需要創(chuàng)建一個矩陣類,然后利用高斯消元法或其他數(shù)值方法求解線性方程組

  1. 創(chuàng)建矩陣類:
#include<iostream>
#include<vector>
#include <cmath>

class Matrix {
public:
    Matrix(int rows, int cols) : rows_(rows), cols_(cols), data_(rows * cols, 0) {}

    double& operator()(int row, int col) {
        return data_[row * cols_ + col];
    }

    const double& operator()(int row, int col) const {
        return data_[row * cols_ + col];
    }

    int rows() const {
        return rows_;
    }

    int cols() const {
        return cols_;
    }

private:
    int rows_, cols_;
    std::vector<double> data_;
};
  1. 實現(xiàn)高斯消元法:
void swap_rows(Matrix& matrix, int row1, int row2) {
    for (int col = 0; col< matrix.cols(); ++col) {
        std::swap(matrix(row1, col), matrix(row2, col));
    }
}

void scale_row(Matrix& matrix, int row, double scale) {
    for (int col = 0; col< matrix.cols(); ++col) {
        matrix(row, col) *= scale;
    }
}

void add_scaled_row(Matrix& matrix, int from_row, int to_row, double scale) {
    for (int col = 0; col< matrix.cols(); ++col) {
        matrix(to_row, col) += scale * matrix(from_row, col);
    }
}

std::vector<double> gauss_jordan(Matrix matrix) {
    int n = matrix.rows();
    for (int i = 0; i < n; ++i) {
        // 尋找主元
        int max_row = i;
        for (int k = i + 1; k < n; ++k) {
            if (fabs(matrix(k, i)) > fabs(matrix(max_row, i))) {
                max_row = k;
            }
        }

        // 交換行
        if (max_row != i) {
            swap_rows(matrix, i, max_row);
        }

        // 消元
        for (int j = i + 1; j < n; ++j) {
            double scale = matrix(j, i) / matrix(i, i);
            add_scaled_row(matrix, i, j, -scale);
        }
    }

    // 回代求解
    std::vector<double> result(n);
    for (int i = n - 1; i >= 0; --i) {
        result[i] = matrix(i, n);
        for (int j = i + 1; j < n; ++j) {
            result[i] -= matrix(i, j) * result[j];
        }
        result[i] /= matrix(i, i);
    }

    return result;
}
  1. 使用矩陣類和高斯消元法解決線性方程組:
int main() {
    // 定義線性方程組的系數(shù)矩陣和常數(shù)向量
    Matrix A(3, 3);
    A(0, 0) = 2; A(0, 1) = 3; A(0, 2) = 4;
    A(1, 0) = 6; A(1, 1) = 7; A(1, 2) = 8;
    A(2, 0) = 1; A(2, 1) = 5; A(2, 2) = 9;

    Matrix b(3, 1);
    b(0, 0) = 10;
    b(1, 0) = 11;
    b(2, 0) = 13;

    // 合并系數(shù)矩陣和常數(shù)向量
    Matrix Ab(A.rows(), A.cols() + 1);
    for (int i = 0; i < A.rows(); ++i) {
        for (int j = 0; j < A.cols(); ++j) {
            Ab(i, j) = A(i, j);
        }
        Ab(i, A.cols()) = b(i, 0);
    }

    // 使用高斯消元法求解線性方程組
    std::vector<double> x = gauss_jordan(Ab);

    // 輸出結(jié)果
    std::cout << "Solution: ";
    for (const auto& value : x) {
        std::cout<< value << " ";
    }
    std::cout<< std::endl;

    return 0;
}

這個例子中,我們創(chuàng)建了一個矩陣類,實現(xiàn)了高斯消元法,并使用它來求解一個線性方程組。你可以根據(jù)需要修改矩陣A和向量b來解決不同的線性方程組。

0