以下是一個(gè)在C++中實(shí)現(xiàn)圖的最短路徑算法的示例代碼,使用Dijkstra算法來(lái)計(jì)算從源節(jié)點(diǎn)到所有其他節(jié)點(diǎn)的最短路徑:
#include <iostream>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
#define INF INT_MAX
// 定義圖的數(shù)據(jù)結(jié)構(gòu)
struct Edge {
int to;
int weight;
};
// Dijkstra算法函數(shù)
vector<int> dijkstra(vector<vector<Edge>>& graph, int source) {
int n = graph.size();
vector<int> dist(n, INF);
dist[source] = 0;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
pq.push({0, source});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
for (Edge& e : graph[u]) {
int v = e.to;
int weight = e.weight;
if (dist[u] + weight < dist[v]) {
dist[v] = dist[u] + weight;
pq.push({dist[v], v});
}
}
}
return dist;
}
int main() {
// 構(gòu)建圖
int n = 5; // 節(jié)點(diǎn)個(gè)數(shù)
vector<vector<Edge>> graph(n);
// 添加邊
graph[0].push_back({1, 10});
graph[0].push_back({2, 5});
graph[1].push_back({2, 2});
graph[1].push_back({3, 1});
graph[2].push_back({1, 3});
graph[2].push_back({3, 9});
graph[2].push_back({4, 2});
graph[3].push_back({4, 4});
graph[4].push_back({3, 6});
// 計(jì)算最短路徑
vector<int> shortestPaths = dijkstra(graph, 0);
// 輸出結(jié)果
for (int i = 0; i < n; i++) {
cout << "Shortest path from node 0 to node " << i << ": " << shortestPaths[i] << endl;
}
return 0;
}
在上面的代碼中,首先定義了一個(gè)圖的數(shù)據(jù)結(jié)構(gòu)Edge
,然后實(shí)現(xiàn)了Dijkstra算法的函數(shù)dijkstra
來(lái)計(jì)算最短路徑。最后在main
函數(shù)中構(gòu)建了一個(gè)圖,計(jì)算了從節(jié)點(diǎn)0到其他節(jié)點(diǎn)的最短路徑,并輸出結(jié)果。
注意,以上示例代碼只是一個(gè)簡(jiǎn)單的示例,實(shí)際應(yīng)用中可能需要根據(jù)具體情況進(jìn)行修改和優(yōu)化。