在C語言中,我們可以使用Pollard’s Rho算法來實現(xiàn)一個高效的因子分解算法
#include<stdio.h>
#include <stdlib.h>
typedef long long ll;
// 計算兩個數(shù)的最大公約數(shù)
ll gcd(ll a, ll b) {
if (b == 0) return a;
return gcd(b, a % b);
}
// Pollard's Rho算法
ll pollards_rho(ll n) {
if (n % 2 == 0) return 2;
ll x = rand() % n;
ll y = x;
ll c = rand() % n;
ll d = 1;
while (d == 1) {
x = (x * x + c + n) % n;
y = (y * y + c + n) % n;
y = (y * y + c + n) % n;
d = gcd(abs(x - y), n);
}
return d;
}
// 遞歸分解因子
void factorize(ll n, ll *factors, int *count) {
if (n == 1) return;
if (n % 2 == 0) {
factors[*count] = 2;
(*count)++;
factorize(n / 2, factors, count);
} else {
ll divisor = pollards_rho(n);
if (divisor != n) {
factorize(divisor, factors, count);
factorize(n / divisor, factors, count);
} else {
factors[*count] = n;
(*count)++;
}
}
}
int main() {
ll n;
printf("Enter the number to be factorized: ");
scanf("%lld", &n);
ll factors[100];
int count = 0;
factorize(n, factors, &count);
printf("Factors of %lld:\n", n);
for (int i = 0; i< count; i++) {
printf("%lld ", factors[i]);
}
printf("\n");
return 0;
}
這個程序首先定義了一個pollards_rho
函數(shù),用于實現(xiàn)Pollard’s Rho算法。然后,我們定義了一個factorize
函數(shù),用于遞歸地分解輸入的整數(shù)。最后,在main
函數(shù)中,我們讀取用戶輸入的整數(shù),并調(diào)用factorize
函數(shù)進(jìn)行因子分解。